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BACKGROUND: The combined effects of multiple environmental toxicants and social stressor exposures are widely recognized as important public
health problems contributing to health inequities. However cumulative environmental health risks and impacts have received little attention from U.S.
policy makers at state and federal levels to develop comprehensive strategies to reduce these exposures, mitigate cumulative risks, and prevent harm.
An area for which the inherent limitations of current approaches to cumulative environmental health risks are well illustrated is children’s neurodevel-
opment, which exhibits dynamic complexity of multiple interdependent and causally linked factors and intergenerational effects.

OBJECTIVES: We delineate how a complex systems approach, specifically system dynamics, can address shortcomings in environmental health risk
assessment regarding exposures to multiple chemical and nonchemical stressors and reshape associated public policies.

DISCUSSION: Systems modeling assists in the goal of solving problems by improving the “mental models” we use to make decisions, including regula-
tory and policy decisions. In the context of disparities in children’s cumulative exposure to neurodevelopmental stressors, we describe potential policy
insights about the structure and behavior of the system and the types of system dynamics modeling that would be appropriate, from visual depiction
(i.e., informal maps) to formal quantitative simulation models. A systems dynamics framework provides not only a language but also a set of meth-
odological tools that can more easily operationalize existing multidisciplinary scientific evidence and conceptual frameworks on cumulative risks.
Thus, we can arrive at more accurate diagnostic tools for children’s’ environmental health inequities that take into consideration the broader social
and economic environment in which children live, grow, play, and learn. https://doi.org/10.1289/EHP7333

Introduction
The combined effects of multiple environmental toxicants and
social stressors are widely recognized as important public health
problems, contributing to health inequities and potentially inad-
equate determinations of effect levels (Clougherty et al. 2014;
Hicken et al. 2012; Morello-Frosch et al. 2011). Calls for federal
and state environmental agencies to consider such cumulative
risks in regulatory and policy decisions have been made by com-
munity advocates, stakeholders, and independent advisory bodies
since the 1980s (NRC 1993; National Environmental Justice
Advisory Council 2004; NRC 2008, 2009; Browner and Hansen
1997; U.S. EPA 1986), and significant research investments have
been made to develop methods to assess the combined effects of
multiple chemical and nonchemical exposures (National Institute
of Environmental Health Sciences 2018; Payne-Sturges et al.
2018; Macdonell et al. 2013; Huang et al. 2018). However cumu-
lative environmental health risks and impacts have received little
attention from policy makers at state and federal levels in terms
of developing comprehensive strategies to reduce these expo-
sures, mitigate cumulative risks, and prevent harm. In fact, there

is resistance to abandoning risk management decisions based on
evaluation of chemicals in isolation from other stressors and risk
modifiers, not because of the lack of evidence of such joint effects
(Clougherty et al. 2014; Glass et al. 2009; Chari et al. 2012;Wright
2009; Appleton et al. 2016; Lewis et al. 2011), but rather because
of the inability or unwillingness to formulate an approach that is
necessarily multidisciplinary and captures the dynamic complexity
to inform policy analysis (Payne-Sturges et al. 2018; Knudsen
2017; Harrison 2017). Thus, scientists are reduced to mapping the
spatial concentration of chemical and nonchemical environmental
stressors and conducting surveillance of chemical of exposures
(e.g., through use of U.S. Environmental Protection Agency’s EJ
Screen and C-FERST, CalEnviro Screen, and NHANES biomoni-
toring) (Office of Environmental Health Hazard Assessment 2019;
Zartarian and Schultz 2010; U.S. EPA 2019; Centers for Disease
Control and Prevention 2018) and tinkering with traditional risk
assessment (U.S. EPA 2003; Sexton 2015), which simply contin-
ues to confirmwhat we already know: a) near ubiquitous exposures
to chemical mixtures even before birth; b) disproportionate expo-
sures among low income and racial/ethnic minority communities;
and c) persistent disparities in health. Where do we go from here?
We recommend that a paradigm shift is essential that reimagines
cumulative exposures and health effects research as well as policy
and practice to move beyond the status quo. This is the context in
which approaches like systems science, specifically system dy-
namics (SD), may be a more robust conceptual framework for
devising policy solutions to address cumulative effects of multiple
chemical, physical, biological, and social environmental stressors.

Research on children’s neurodevelopment demonstrates the
inherent limitations of current scientific approaches to cumulative
environmental health risks. For example, children are often
exposed prenatally and in early childhood to multiple chemicals
and stressors that can adversely affect their cognitive abilities,
academic performance, and consequent educational trajectories,
adult health, wealth, and social status (Halle et al. 2009; Suor
et al. 2015; Gee et al. 2012; Halfon et al. 2010; Evans and Kim
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2010; Morello-Frosch and Shenassa 2006; Evans and English
2002; Gray et al. 2013; Landrigan et al. 2010; Tulve et al. 2016;
Trentacosta et al. 2016). The extent and breadth of such expo-
sures are influenced by race/ethnicity and socioeconomic status
(SES) that may contribute to pronounced health disparities for
multiple outcomes, including school readiness and cognitive
delay (Hackman and Farah 2009; Hillemeier et al. 2009; Brooks-
Gunn and Duncan 1997; Entwisle 1999; Hair et al. 2006; Noble
et al. 2005a; Burkam and Lee 2002). For example, concomitant
exposures to maternal material hardship (e.g., unmet basic needs)
and poor diet can heighten the toxic effects of air pollutant expo-
sures on children’s cognitive functioning (Rauh et al. 2004;
Guxens et al. 2012). Although there is renewed attention among
leading scientific, medical, and child health experts to improve
children’s overall environment to support healthy brain develop-
ment (Bennett et al. 2016), current environmental policies still
regulate only single contaminant /pollutant exposure [one slight
exception is the assessment of aggregate pesticide exposures
under the Food Quality Protection Act (FQPA) of 1996 (U.S.
Congress 1996) for agricultural pesticide use (although FQPA
has limitations, which are discussed later)] determined in the ab-
sence of any social/physical context, likely underestimating true
health risks. Further, current risk assessment practice often fails
to substantively account for the underlying dynamic complexity
and the interdependent influence of sociostructural and interper-
sonal factors on neurodevelopmental risks over time.

The purpose of this article is to delineate how a complex sys-
tems approach can address such shortcomings in environmental
health risk assessments and reshape decisions related to associ-
ated public policies. The concept of cumulative risks/impacts rep-
resents the synergistic health effects of the accumulation of
multiple harmful environmental exposures. Therefore, we use
SD, a systems science method that posits that the feedback struc-
ture of a system gives rise to its behavior (e.g., accumulations) to
illustrate how insights can be gained, using combined effects of
environmental chemical contaminants and social stressors on dis-
parities in children’s neurodevelopment as an illustrative exam-
ple. Our objectives are to:

1. Provide a brief overview of the extant literature on child-
ren’s multiple social and environmental neurodevelopmen-
tal risks.

2. Compare and contrast current approaches with a complex
systems paradigm for evaluating factors that affect child-
ren’s neurodevelopment.

3. Present a proof-of-concept SD model and describe how
SD modeling can support the design of more robust effec-
tive policy responses to cumulative environmental risks
and subsequent health impacts.

Children’s Multiple Social and Environmental
Neurodevelopmental Risks
Neurodevelopmental Disorders and Disability Trends
over Time
Developmental disabilities affect 1 in 6 children in the United
States, and the rate has increased over time (Zablotsky et al. 2019);
these conditions include learning disabilities, sensory deficits, de-
velopmental delays, cerebral palsy, autism, and attention deficit
and hyperactivity disorders (ADHD) (Zablotsky et al. 2019).
Among these conditions, ADHD and learning disabilities have the
greatest prevalence overall. Higher rates of developmental disabil-
ities among children were associated withMedicaid insurance cov-
erage (22%), family incomes below 200% poverty level (20%), low
maternal education (17%), and male sex (22%) (Zablotsky et al.
2019). These measures, however, do not capture subclinical

decrements in brain function that may be even more common
(Grandjean and Landrigan 2014). Such disabilities can increase the
cost for education and medical care, diminish quality of life, and
reduce academic achievement, with profound consequences for
societal welfare and productivity (Gould 2009; Grandjean and
Landrigan 2014; Calderón-Garcidueñas et al. 2015; Bellanger et al.
2015; Lanphear 2015; McCann 2014). The estimated annual cost
(medical care, lost economic productivity) of environmentally
mediated neurodevelopmental disorders in U.S. children is
$74:3 billion in 2008 dollars (Trasande and Liu 2011).

Social and Nonchemical Environmental Factors
Prenatal and early-life exposures to family and neighborhood dis-
advantage, physical stressors (e.g., substandard housing, crowd-
ing, and noise) and psychosocial stressors (e.g., family turmoil,
violence, poverty, and household food insecurity) influence IQ
(IOM 2000), language and cognitive development (Alaimo et al.
2001; Suor et al. 2015; Zaslow et al. 2009), socioemotional devel-
opment (Evans and English 2002; Kleinman et al. 1998), and aca-
demic achievement (Alaimo et al. 2001; Lovasi et al. 2014).
Childhood SES is an important predictor of neurocognitive per-
formance, particularly of language and executive functions
(Hackman and Farah 2009; Noble et al. 2005a, 2005b, 2012, 2015;
Kishiyama et al. 2009; Halle et al. 2009). Psychosocial stress
affects cognitive performance and prefrontal cortex and hippocam-
pal regions of the brain (McEwen 2000a; Lupien 2006; McEwen
2000b). These effects may be mediated by nutrition, parenting
styles, cognitive stimulation, chronic stress, and environmental
contaminant exposures (Weiss and Bellinger 2006;Wright 2009).

Chemical Stressors
Numerous industrial chemicals [e.g., lead (Pb), organophos-
phate pesticides, phthalates, bisphenol A (BPA), methylmer-
cury (MeHg), polychlorinated biphenyls (PCBs), arsenic, and
toluene] are recognized causes of neurodevelopmental disor-
ders and subclinical brain dysfunction (Grandjean and
Landrigan 2006, 2014; Weiss 2000; Bennett et al. 2016).
Experts conclude that there is no safe level of Pb exposure for
children (Canfield et al. 2003, 2005). Developmental exposures
to air pollution, a complex mixture of chemicals and particulate
matter [fine particulate matter with aerodynamic diameter ≤
2.5 μm (PM2:5 particulate matter with aerodynamic diameter ≤
10 μm (PM10, polycyclic aromatic hydrocarbons (PAHs), NO2,
black carbon], also appear to contribute to neurodevelopmental
disorders in children (Block et al. 2012; Calderón-Garcidueñas
et al. 2014, 2015; Guxens and Sunyer 2012; Suades-González
et al. 2015; Sunyer 2008; Sunyer et al. 2015; Weiland et al.
2011; Perera et al. 2009, 2014; Clifford et al. 2016;
Brockmeyer and D’Angiulli 2016; Xu et al. 2016; Chiu et al.
2016; Payne-Sturges et al. 2019). PAH, a component of PM2:5,
has been associated with developmental delay (Perera et al.
2006); reduced IQ (Perera et al. 2009); symptoms of anxiety,
depression, and inattention (Perera et al. 2012; Edwards et al.
2010); ADHD (Perera et al. 2014); and reduced volume of size
of brain regions mediating information and impulse control
(Peterson et al. 2015). Roadway proximity (Harris et al. 2015),
traffic-related particulate matter (Suglia et al. 2008), and ele-
mental carbon and NO2 (Sunyer et al. 2015, 2017) were associ-
ated with decreased cognitive function. There is increasing
evidence that prenatal exposure to traffic-related air pollutants
(Volk et al. 2011; Becerra et al. 2013) and PM2:5 (Raz et al.
2015) are risk factors for autism spectrum disorder (ASD)
(Kalkbrenner et al. 2015).
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Combined Neurotoxic Effects of Chemical and Nonchemical
Exposures
Well-known disparities in environmental exposures important to
children’s health track along socioeconomic lines (Adamkiewicz
et al. 2011; Brochu et al. 2011; Fann et al. 2011; Gray et al.
2013, 2014; Miranda et al. 2011; Morello-Frosch and Shenassa
2006; Morello-Frosch et al. 2011; Morello-Frosch and Jesdale
2006; Bell and Ebisu 2012; Landrigan et al. 2010; Hicken et al.
2012; Hajat et al. 2013, 2015; Salihu et al. 2012; O’Neill et al.
2007; Mohai et al. 2009; Evans and English 2002; Bullard et al.
2007). In addition, social and neighborhood conditions can mod-
ify associations between environmental contaminant exposures
and neurodevelopment (Wright 2009). For example, poverty,
maternal material hardship, and poor diet have been shown to
heighten the toxic effects of air pollutant and other chemical
exposures on cognitive functioning of children (Rauh et al. 2004;
Guxens et al. 2012; Vishnevetsky et al. 2015; Chari et al. 2012;
Hubbs-Tait et al. 2005; Lovasi et al. 2014; Appleton et al. 2016).
Additionally, longitudinal studies of Pb exposure show synergis-
tic effects with lower SES, thus demonstrating that higher levels
of Pb exposure were associated with worse cognitive outcomes
among children in families of low SES (Bellinger et al. 1988,
1990).

Laboratory studies provide additional support for cumulative
effects of neurotoxicants and psychosocial stressors that can
derive from their impacts on similar biological targets. Animal
studies of pre- and postnatal air pollution exposures have demon-
strated glial activation, white matter alterations, and negative
effects on cognitive functions, particularly among males (Allen
et al. 2014a, 2014b). Similarly, stress enhanced proinflammatory
cytokine expression and associated neural damage in rats (de
Pablos et al. 2006), and long-term exposure to psychosocial haz-
ards was associated with structural and functional brain changes
(McEwen 2000b; Sapolsky 1999). Studies of metal exposures
(e.g., maternal and/or lifetime Pb exposures or developmental
exposures to MeHg) have shown that toxic effects on offspring
are enhanced when combined with prenatal stress exposures
(e.g., maternal restraint, cold exposure), likely because both risk
factors influence the hypothalamic pituitary axis and brain meso-
limbic systems (Cory-Slechta et al. 2004, 2010; Virgolini et al.
2008; Weston et al. 2014). These metals are risk factors that co-
occur or even occur successively with psychosocial and physical
stressors in many human populations.

Environmental Health Disparities and Neurodevelopmental
Effects
Children’s neurodevelopment and functioning reflects interactions
of multiple social determinants, environmental contaminant expo-
sures, and nonchemical stressors at multiple levels (individual, fam-
ily, community, national). Further, the impact of a neurotoxicant can
differ depending on the developmental stage during which exposure
occurs (“critical windows of vulnerability”) and lead to lifelong con-
sequences (Grandjean and Landrigan 2006). Maturation of the cor-
tex during early development is intensive, and susceptibility to
environmental insults is elevated (Grandjean and Landrigan 2006;
Rice and Barone 2000). These research findings suggest intervening
earlier in life or during childhood could lead to a greater reduction in
health risk later in life (Grandjean et al. 2015). The enhanced expo-
sures of racial/ethnic minority and low-income children to chemical
and nonchemical neurotoxic environmental stressors reflect past and
present economic, political, and regulatory decisions. We theorize
that racialized and SES differences in children’s exposures to neuro-
toxicants and related neurodevelopmental and cognitive effects are
interdependently related to discriminatory practices/differential

treatment in the siting of polluting industrial operations and traffic
routes, education, employment, housing, health care, and commu-
nity economic investments because of race and class, rather than pre-
sumed inherent genetic differences based on physical appearance
(Link and Phelan 1995; Williams and Collins 2001; Morsey and
Rothstein 2015; U.S. Department of Health and Human Services
2019;Weiss andBellinger 2006; Bailey et al. 2017).

Grounded in social ecologicalmodels of health (Bronfenbrenner
1989; Diez-Roux 1998), Figure 1 presents an interdisciplinary con-
ceptual framework for environmental health disparities (Gee and
Payne-Sturges 2004) adapted for children’s neurodevelopment,
extending the traditional source–exposure–disease continuum to
include the interaction of structural and community-level psychoso-
cial stressors (e.g., violence, poverty) with environmental exposures
to produce health disparities in outcomes such as cognitive delay
and ADHD. “The framework shows that race and ethnicity are
highly correlated with residential location, with minorities and
whites often living segregated from one another” (Gee and Payne-
Sturges 2004). Differential residential location as a result of institu-
tionalized discriminatory practices in the housing market leads to
differential exposure to health risks (Williams and Collins 2001;
Morello-Frosch and Jesdale 2006; Casey et al. 2017; Mehra et al.
2019). Social vulnerability at community levels develops when
neighborhood organizations (resources) may not be able to counter-
balance zoning policies and tax incentives (structural factors) that
encourage the entry of new polluting industries or that discourage
the development of positive infrastructure, such as green space
and access to healthy foods or quality early childhood education,
enhancing community vulnerability/community stress (e.g., lack
of economic and social opportunities, unsafe neighborhoods).
Social vulnerability would also occur when community organi-
zations are unable to address toxic emissions from past polluting
industries. When personal coping cannot counterbalance these
external insults, individual stress and illness may result.
Additionally, parental stress can affect children and their neuro-
development (Bolton et al. 2013; Cowell et al. 2015; Evans and
English 2002; Fishbein et al. 2009; Johnson et al. 2016). The
framework thus illustrates both positive and negative feedback
conditions (i.e., neighborhood stressors and pollution both pro-
duce adverse health conditions, which could be counterbalanced
by health-promoting neighborhood resources). Also, poor indi-
vidual and community health may further weaken community
resources, leading to a vicious cycle, as illustrated by the return
loop from health to stress. Thus, there is a complex, dynamic
interrelationship of multiple factors across the life course and
heterogeneity in the distribution of these factors among children.
This conceptual framework also illustrates how such factors may
be arranged to create social structures that produce health inequi-
ties (Powell 2008; Elder-Vass 2010) and highlights the important
contributors to children’s environmental exposures and develop-
mental outcomes that are often ignored in environmental health
policy making. From our perspective, such a framework repre-
sents a significant challenge to traditional statistical methods and
risk assessments and to environmental health policy makers at
national and state levels to determine how to direct investments, ini-
tiatives, and regulatory actions to ultimately achieve the desired pub-
lic health protections. Although such conceptual models such as
those shown in Figure 1 can convey complexity, they can neither
capture the magnitude or temporality of the influence of factors nor
quantify the potential impacts of preventive interventions.

Current Environmental Policy Approaches for
Neurodevelopmental Risks
Since the mid-1970s, quantitative risk assessment, a method to
identify and measure the risk that a particular environmental
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contaminant presents at a given exposure level, has been critical
to many federal environmental regulatory and policy decisions
(NRC 1983). Risk assessment consists of a four-step process:
hazard identification, dose–response assessment, exposure assess-
ment, and risk characterization (NRC 1983) based on probability
theory, the law of averages, and linear regression modeling. It is
a reductionist approach used mainly to assess and regulate indi-
vidual chemicals. Although risk assessment has provided valua-
ble guidance to the development of effective environmental
policies, the limitations of chemical-by-chemical risk assessment
to address real-world exposures have become increasingly evi-
dent (Israel 1994; Knudsen 2017). It was not until the 1996
FQPA that the U.S. Environmental Protection Agency (U.S.
EPA) was statutorily mandated to consider aggregate exposure
and cumulative risks of pesticides, at least those with common
mechanisms of toxicity, and biological susceptibility in relation
to human health—specifically among children—when regulating
pesticide residues on foods, many of which are neurotoxic (U.S.
Congress 1996). However, this requirement assumes a common
mechanism of action and dose additivity and thus is highly limited
in scope, omitting other mechanisms of toxic effects, synergistic
effects, consequences of co-occurring nonchemical stressors, and
convergence of downstream biological effects. Further, this para-
digm does not examine upstream economic and social forces that
underlie disparities in exposure to neurotoxic chemical stressors,
thus limiting an environmental health policy maker’s informed
ability to consider intervention opportunities.

Broadening traditional risk analysis to include nonchemical
stressors such as psychosocial factors (e.g., discrimination, pov-
erty), physical agents (e.g., heat, noise) or biological stressors (e.g.,
pathogens), aggregate and background exposures, all relevant

pathways and routes, and socioeconomic vulnerabilities was high-
lighted by the National Research Council report, “Science and
Decisions: Advancing Risk Assessment,” as “a move toward mak-
ing risk assessments more relevant to environmental [health]
decision-making and to the concerns of affected communities”
(NRC 2009). Recent evaluations of statutory authorities suggest
that the U.S. EPA could consider cumulate risks and impacts in reg-
ulatory decision making (Knudsen 2017; Alves et al. 2012). Yet,
there has been no progress in this regard, with cited reasons includ-
ing data deficiencies, inherent analytical complexities, lack ofmech-
anistic understanding regarding stressor interactions, and lack of
sufficient analytical tools (Sexton 2015; Payne-Sturges et al. 2018).
Further, dominant narratives cited among U.S. EPA regulators are
that “Environmental problems facing low income and minority
communities are not that serious” (Harrison 2019) and that efforts to
address inequities are beyond the purpose of the agency (e.g., “We
do ecology, not sociology”) (Harrison 2017), further constraining
progress to protect public health from cumulative exposures.

Yet, the consequences of basing environmental health policies
on single chemical risk assessment have been well argued (Cory-
Slechta 2005; Israel 1994; NRC 2009; Wright 2009). A critical pol-
icy example relevant to children’s neurodevelopment is the U.S.
EPA’s National Ambient Air Quality Standard for Pb. A reanalysis
of the risk assessment shows that by not considering differential
effects of Pb by SES, the current standard is underprotective of the
most vulnerable children (Chari et al. 2012). The current standard of
0:15lg=m3 of Pb in ambient air, corresponding to a mean <2-point
IQ loss for the nation’s children, an IQ loss theU.S. EPAdeemed ac-
ceptable. However, a >2-point IQ loss was estimated for children
with low SES exposed at the U.S. EPA standard (Chari et al. 2012).
Further, a small downward shift in the populationmeanwould result

Figure 1. Exposure–Disease–Stress Framework for neurodevelopmental disparities. Modified from Gee and Payne-Sturges, 2004.
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in an increase in the number of children with IQ levels consistent
with intellectual or cognitive challenges, and a corresponding
decrease in children with IQ levels considered “normal gifted” or
“moderately gifted” (Lanphear 2015). Lower-income communities
disproportionately exposed to Pb (Landrigan et al. 2010; Moody
et al. 2016) may also be in areas with older housing stock, which
contain Pb-based paint and Pb plumbing (Whitehead and Buchanan
2019); may also face higher levels of crime, violence, overcrowding
(Evans and Kim 2010), and noise (Casey et al. 2017; Evans and
English 2002); and have lower levels of educational enrichment
(Johnson et al. 2016). The potential enhanced susceptibility of chil-
dren of greater socioeconomic disadvantage to Pb is an important
concern—especially because the U.S. EPA’s IQ-loss framework
(U.S. EPA 2008) specifically refers to the subset of children who
would likely be exposed at the level of the standard. According to
Chari et al., a Pb standard below a level of 0:10lg=m3 would be
more protective (Chari et al. 2012). Further, the approach U.S. EPA
used did not consider cumulative exposures of Pb from other sour-
ces (the 2008 revised National Ambient Air Quality Standards were
developed using an “air-related IQ loss framework”) (U.S. EPA
2008), especially among children with lower SES. This omission
and its potential unintended effects are yet additional motivations
for proposing a systems approach to developing environmental
health policies.

However, the impacts of early-life exposures to neurotoxicants
does not stop at childhood. Impairment in brain development in
one domain could alter the trajectory of development in other
domains, leaving a child poorly equipped to make good, future-
oriented decisions and, consequently, because of poor academic
success, facing restricted employment opportunities, material
hardship, and other socioeconomic stresses (Bellinger et al. 2016).
Further, changes in brain function occur throughout life, and some
consequences of early damage may not even emerge until
advanced age (Weiss 2000). Additionally, Pb-induced effects in
one generation can have negative effects on the next generation,
who may not have been exposed (Bellinger et al. 2016). These
intergenerational effects are typically not considered in risk assess-
ment. As a result, an environmental policy decision lacking consid-
eration of cumulative risk modifiers and dynamic complexity may
contribute to or exacerbate disparities not only in exposures but
also health effects.

System Dynamics and Cumulative Environmental
Neurodevelopmental Risks
Because children’s neurodevelopment reflects a complex set of
interactions of social and environmental factors (Bellinger et al.
2016; Bronfenbrenner 1989), including policy decisions, we

IIceberg Diagram

What was the event?

What is the pa�ern of behavior 
underlying the event?

What is the structure of the 
system that generates the 
pa�ern of behavior?

What are the values 
and goals underlying 
the structure? “It’s out of our hands.”

“We do ecology, not sociology.”

“The statutes don’t allow us to consider cumula�ve.”

“The science isn’t there yet.”

“We must maintain a level playing field for industry.”

“We already protect public heath.”

Environmental 
regula�ons under-
protec�ng minority 

and low income 
children from 

mul�ple neuro 
toxicants

Figure 2. “The iceberg,” a common systems metaphor, as applied to cumulative neurodevelopmental risks and impacts and environmental health policy. The iceberg
is divided into four parts. Part 1: This part, the tip of the iceberg, is above the ocean surface and represents the event, such as the recognition that current environmen-
tal regulations are under-protecting minority and low-income children from multiple neurodevelopmental toxicants. Part 2: This part, just below the ocean’s surface,
depicts the pattern of behavior or time trends (AKA behavior-over-times (BOT) graphs) underlying the event. The first BOT graph is titled prevalence of developmen-
tal disability among U S children, plotting percentage, ranging from 0 to 20 in increments of 10 (y-axis), the second graph is titled prevalence of pregnant women
with detectable levels of 62 neurotoxic chemicals, plotting percentage, ranging from 0 to 100 in increments of 50 (y-axis), and the third graph is titled prevalence of
U S children living below 200 percent poverty line, plotting percentage, ranging from 0 to 50 in increments of 25 (y-axis) across years, ranging from 1997 to 2017
(x-axis). Part 3: Further below the ocean’s surface, is the structure of the system that generates the pattern of behavior (BOTs) using causal loop diagrams of interlink-
ing reinforcing and balancing feedback loops. Part 4: This final part is deep beneath the surface and represent the ultimate values and goals that underly the system
structure that give rise to the patterns of behaviors (BOTs) which lead to the event or tip of the iceberg.
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argue it is critical to move away from looking at isolated events
and their causes and to examine the underlying system (system
structure), made up of interacting parts, whose behavior creates
these disparities. Figure 2 is based on a commonly used systems-
thinking metaphor of the “iceberg.” In public health we typically
focus on the events, symptoms or health outcomes, the so-called
tip of the iceberg (e.g., environmental regulations inadequately
protecting minority and low-income children from exposure to
multiple neurotoxicants and disparities in health outcomes), and
we tend to narrow conceptual boundaries rather than expand
them and to ignore feedback effects in favor of isolated linear
cause-and-effect relationships (Rutter et al. 2017). To achieve
lasting public health improvements, researchers, policy makers,
communities, and other relevant stakeholders need to examine
the patterns of behavior or trends that link symptoms over time
and expose the underlying system structures that shape these
trends and health outcomes.

Systems theory focuses on relationships and processes rather
than singular, linear causation (Meadows 2008; Sterman 2000).
Systems science methods enable investigators to simultaneously
examine the dynamic relationships of variables at multiple levels
of analysis while also studying the impact of the nonlinear behav-
ior of the system as a whole over time (Sterman 2000). These
methods can be used to develop policy analysis tools. Systems
modeling is not new and is routinely used in fields such as corpo-
rate management, economics, engineering, physics, biology, and
environmental resource management (Sterman 2000; Forrester
1961; Currie et al. 2018; Tidwell et al. 2004). Systems science is
increasingly being recognized in the health sectors for its utility in
mapping and understanding complex health problems, operational-
izing research evidence, and systematically analyzing ranges of
intervention and policy solutions (Luke and Stamatakis 2012;
Atkinson et al. 2015; Calancie et al. 2018). Systems-oriented
approaches have been successfully applied to examine trends and
the impact of various interventions prior to implementation for
specific conditions, such as influenza (Araz 2013), suicide preven-
tion (Atkinson et al. 2015), cancer (Marcus 2007), cardiovascular
disease (Hirsch 2010; Brittin et al. 2015; Knight et al. 2017), and
diabetes and obesity (Hammond 2009; Hammond and Dube 2012;
Luke and Stamatakis 2012; Johnston et al. 2014; Zhang et al.
2014; Gittelsohn et al. 2015; Freebairn et al. 2019).

SD modeling is one branch of systems science methods, which
also include agent-based modeling and social network analysis.
(Sterman 2000; Epstein 2006; Scott 2000; Wasserman and Faust
1994). A central tenet of SD is that the complex behaviors of organi-
zational and social systems are the result of ongoing accumulations
over time of people, material or financial assets, information, or
even biological or psychological states (e.g., cumulative exposures,
neurological functioning, number of Pb-poisoned children, number
of childrenwith cognitive delay) embeddedwithin a set of balancing
and reinforcing feedback mechanisms or loops (Homer and Hirsch
2006). Reinforcing feedback mechanisms amplify a change (e.g.,
living in poverty amplifies the negative effects of Pb exposure,
which leads to limited economic opportunities and “feeds back” to
further increase poverty), and balancing feedback mechanisms
counteract a change (e.g., increasing timely assessment access to
special educational services reduces the severity of effects of Pb-
induced cognitive impairment and the need for further assessments).
The dynamics of all systems arise from the interactions of multiple,
interacting feedback mechanisms with changing influence (i.e.,
shifts of loop dominance) over time. Thus explanations in SD are
from an endogenous perspective, meaning that it seeks to find
explanations for system behaviors by understanding the internal
structure of a feedback system rather than focusing on factors exter-
nal to the systems (Richardson 2011). SD uniquely offers the

practical application of these concepts through qualitative/informal
causalmaps and quantitative simulationmodeling on a computer.

Causal loop diagrams (CLDs) are graphical representations of
hypothesized causal relationships between factors, with specialized
notation for representing balancing and reinforcing feedbacks
(Sterman 2000). These SD qualitativemodels take the formof one or
more closed loops to depict the cause-and-effects linkages, as shown
in Figure 3. Reinforcing and balancing feedback loops are associated
with behavior over time, such as patterns of exponential growth or
decay. Series of feedback loops connected to one another can define
system archetypes, such as virtuous/vicious cycles (amplification
and reinforcement: a reinforcing process producing success or disas-
ter), fixes that backfire (unintended consequences: the long-term
negative consequences of a quick fix), or limits to growth (unanti-
cipated constraints: limiting mechanism on spiraling growth)
(Meadows 2008; Stroh 2015). The CLD depicted in Figure 3 repre-
sents causal hypotheses about cumulative environmental and social
stressors that create disparities in neurodevelopmental outcomes in
children. For example, the reinforcing feedback relationship “R3”
illustrates the role of racial discrimination (e.g., in the location of pol-
luting facilities and residential segregation) in increasing environ-
mental exposures to neurodevelopmental toxicants among children.
As exposure to multiple neurodevelopmental toxicants increases,
neurological functioning decreases, which limits opportunities in
later life as children become adults. Individuals with decreased neu-
rological functioning may be further discriminated against in educa-
tion, in housing, and in employment, which in turn decreases access
to quality housing and less-polluted neighborhoods.

SD computational and simulationmodels, typically informed by
CLDs, are articulated with stocks (e.g., number of children with
learning disabilities, ADHD, or developmental delay) and flows
(e.g., the rate of exposure, annual IQ loss) with balancing and rein-
forcing feedback structures, and such models consist of a set of
coupled ordinary differential equations developed from a broad
spectrum of relevant measured and experiential data, including ex-
posure–response data from epidemiological studies and expert elici-
tation (Homer and Hirsch 2006). These quantitative models can
accommodate nonlinearities by including interactions across varia-
bles atmultiple levels and spatiotemporal scales; account for interre-
lationships, feedbacks, and interactions among these factors; and
also provide insights into the emerging aggregate patterns that com-
plex systems produce. Simulationmodels can be used to help policy
makers understand a system and the impacts of various policy deci-
sions before implementation. This feature addresses a major ethical
issue in environmental health, where researchers cannot randomly
assign populations to exposure scenarios that might be harmful.
Programming tools that support SD modeling include STELLA
(version 2.1; ISEE Systems) and VENSIM software (version 6.4;
Ventana Systems). Models are considered to be theoretical repre-
sentations of the complex problem and hencemust undergo a valida-
tion process that includes determining accuracy of the model in
reproducing real-world historical data patterns (behavior over time)
to build confidence in the structure and predictions of amodel.

Figure 4 provides an example of the output from our proof-
of-concept SD simulation model of the CLD (Figure 3). The sim-
ulation model is implemented in STELLA Architect 2.0.1. The
model simulates the growth of neurological functioning of birth
cohorts from 2012 through 2017 for both an exposure group and
a reference group. The model uses global population-level esti-
mates of cumulative expressive language development by age for
girls as a proxy for normal neurological growth curves (Ertem
et al. 2018). Estimates are used to parameterize the continuous
curves for fractional growth rates by age. Environmental expo-
sures are then modeled as ratios that affect the factional growth
rates where an environmental exposure of 2 will halve the
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fractional growth rate. This approach allows for modeling envi-
ronmental exposures that are sensitive to specific stages of child-
ren’s neurological development. Disparities are represented as
the mean difference in neurological function between the reference
group and exposure group normalized by the reference group. For
example, a mean difference of 0.1 means that the neurological
functioning of the exposure group is 10% below that of the refer-
ence group. The choice to represent disparities in this form is based
on the idea that developmental delays provide a reasonable proxy
for the variables associated with discrimination and a larger set of
vulnerabilities.

The output from the simulation model shown in Figure 4
illustrates a scenario where an environmental exposure from
2012 through 2015 (line 1 in Figure 4A) affects children’s’ neu-
rological development. Initially, there are no developmental
delays until the period of exposure. With exposure, the develop-
mental delays and disparities rise. As the disparities increase, so
too does the discrimination, which feeds back to amplify the
effects of exposures. Once the exposures are removed, the devel-
opmental delays persist because children having passed a growth
stage are not able to make up for the differences created by the

environmental exposures. Figure 4B shows the corresponding
simulated growth curves for the exposure group.

Policy Insights from SD Modeling
SD modeling assists in the goal of solving problems by improv-
ing the mental models we use to make decisions, including regu-
latory and policy decisions (Richardson 2011). In the context of
disparities in children’s cumulative exposure to neurodevelop-
mental stressors, unexpected insights about the structure and
behavior of the system may be found, with the types of insights
varying depending on which aspect of the problem is to be
addressed through policy change (Hovmand 2014). This informa-
tion in turn influences the type of SD modeling that would be
appropriate, from visual depiction, i.e., informal maps, to formal
quantitative simulation models. These insights can be enriched
using participatory approaches that enable practitioners, decision
makers across different sectors (e.g., housing, environmental
management, transportation, education), researchers from multi-
ple disciplines, and community members to learn together about
cumulative exposures and children’s neurodevelopmental

Figure 3. Example causal loop diagram on environment, social stressors, and neurodevelopment. Lines with arrows represent hypothesized causal relationships where
polarities indicate the direction of influence. Double lines across the causal relationships represent temporal delays between causes and effects. Arcs with arrow heads
indicate feedback mechanisms or loops where loops with “B” prefixes (B1, B2, and B3) represent balancing loops that counteract a perturbation, and “R” prefixes
(R1, R2, and R3) represent reinforcing loops that reinforce a perturbation. Text in italics under the loop provides a short name for the feedback mechanism.

Environmental Health Perspectives 035001-7 129(3) March 2021



outcomes to build new concepts, insights, and practical innova-
tions to identify high leverage points (Meadows 1999) for reduc-
ing the impact from cumulative exposures (Hovmand 2014;
Cockerill et al. 2009).

An SD formal visual representation of a system can make our
mental models more explicit and help stakeholders “see” that
there is a system with interrelated components through systems
pictures and CLDs (Hovmand 2014). Using SD could help the
various stakeholders involved in children’s neurodevelopment
break out of their silos and bounded rationalities. Such insights
allow stakeholders to probe others’ thoughts about the system
or shift from linear cause–effect views to a feedback perspec-
tive (Hovmand 2014). Recognizing opportunities to intervene
(Meadows 2008) can lead to alternative system structures and
to seeing ways that system transformation could occur. Deeper
system insights involve developing more sophisticated and
counterintuitive considerations about the system (Hovmand
2014). Formal simulation modeling can provide critical insights
about which feedback mechanisms drive behavior patterns and
elaborate consequences of nonlinear behavior and time delays
in the system and what the consequences could be for decision
makers, a first step to begin designing policies to shift these dy-
namics (Hovmand 2014). For example, short-term focus
on reducing children’s neurotoxicant exposures without also

addressing social risk factors (e.g., access to high-quality early
childhood education or improving incomes of families of lower
SES) may not improve children’s cognitive outcomes or close
the achievement gaps as intended. A number of environmental
statutes place broad mandates on the U.S. EPA to establish
health-based standards that a) are “requisite to protect public
health with ample margin of safety including susceptible popu-
lations” or do not tolerate “any” significant risk to public health
or welfare; b) include technology-based provisions that do not
tolerate risks that can be “feasibly” eliminated; and c) require
risk–benefit provisions that find intolerable technologies, sub-
stances, or processes that pose “unreasonable” risk (Alves et al.
2012). In this context, we contend that the U.S. EPA does not
need to impose social support such as providing access to
health care, but the agency could do more to reduce hazards
because people are more susceptible because they lack access
to health care. Additionally, we contend that it should be in-
cumbent on the U.S. EPA to work with other agencies who
have the power to address conditions that are making people
more susceptible or more vulnerable to environmental contami-
nants and pollutant exposures. The SD approach forces policy
makers to move out of their silos and to take a more “both/
and” approach rather than current “either/or” and “not at all”
approaches.

Figure 4. Output from proof-of-concept system dynamics simulation model (A) environmental exposure (line 1) and population level disparities (line 2) as differ-
ence in neurological functioning relative to reference group, and (B) average neurological functioning growth curve for each birth cohort from 2012 to 2017 where
birth cohorts are 10 d wide. Note that the repeated pattern of line types (solid, dots, dashed) and colors in B are used only to help distinguish adjacent birth cohorts.
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Potential Challenges
SD has strengths and weaknesses. Its goal is to develop a scientifi-
cally based representation of the system for enhancing communica-
tion and understanding of the feedback system underlying dynamic
behavior to develop efficacious policy solutions (Meadows 1999;
Richardson 2011; Sterman 2018) that could address a topic such as
how environmental exposures and social stressors affect children’s
neurodevelopment. Thus, the right selection and sequencing of
group elicitation exercises to ensure representation of multiple per-
spectives is important. Although SD quantitative modeling repre-
sents hypothesized causal relationships regarding how diverse
factors interact over time, the literature may or may not yet support
those assumptions. Nevertheless, these models can help in consist-
ent and rigorous consideration of implications of assumptions,
allowing more complete and effective use of empirical evidence to
better inform choices about CLD structure. The development of a
useful SD simulation model requires a balance between comprehen-
siveness and comprehensibility (Hovmand 2014; Sterman 2000).

Although SD has historically been viewed as a “top-down,”
aggregate, or “lumped parameter” approach to systems modeling
and has been contrasted with “bottom-up” individual-level mod-
eling (e.g., discrete event simulations, agent-based modeling),
this distinction is misleading and contributes to confusion in both
the selection of methods and results. For example, there are
examples in SD of individual-level models; aggregate-level mod-
els; and mixed, multilevel models including the embedding of
agents represented by a feedback system within an environment
(Sterman 2018; Hosseinichimeh et al. 2018; Osgood 2009).

The main distinction between SD and other methods is not
the top-down vs. bottom-up approach (Sterman 2018), but the
explicit emphasis on articulating the feedback mechanisms
(Richardson 2011) and taking a continuous time, continuous vari-
able orientation (Forrester 1961) to explicitly representing those
feedback mechanisms, as opposed to the event-driven representa-
tion in methods such as discrete event simulations and agent-
based models, where feedback mechanisms are implicit and
emerge through interactions. The main implication of this distinc-
tion has to do with the complexity of implementing the model
and computational requirements for simulation. As a system of
ordinary differential equations, SD models can generally run
much faster than an equivalent agent-based model of the system
(Zeigler 1976). However, this speed comes at a cost in terms of
representing actors in a system with many different attributes, the
ability to efficiently represent larger social networks, and the
requirement to have an explicit feedback theory (Rosenthal et al.
2020).

The development of an SD model to represent cumulative
environmental neurodevelopmental risk should follow good mod-
eling practices (Barton et al. 2020) and draw on a consistent set
of variables across the literature for estimation of parameters and
equations associating individual risk factors and environmental
and social stressor exposures with neurodevelopmental outcomes.
All data used to develop and test the model, including definitions
of all variables, their units, ranges, expected values, and citations,
should be compiled and documented to maximize accessibility of
the model and supporting data (Sterman 2018; Rahmandad and
Sterman 2012). Given the complexity of the system involved and
the nature of social determinants, it is unlikely that all the model
parameters and equations will have firm estimates from data or
literature; therefore, sensitivity analyses are needed to test the
robustness of model parameters and impact of uncertain parame-
ters to make necessary changes following best practices from the
SD field (Sterman 2000). Indeed, scientific efforts are needed to
begin to quantify nonchemical stressors, including, for example,
differences by the type of stress (Meehl 1990).

Another benefit of applying SD modeling process to cumula-
tive risk is to highlight the most important data gaps. Systems sci-
ence tools (including SD as described here) are best seen as a
complement to (rather than a replacement for) existing approaches,
with different strengths and weaknesses in comparison with conven-
tional tools, and benefits are accruedwhen both are used together. For
example, evidence from epidemiological and experimental research
quantifying the effects of social stressors on children’s neurodevelop-
ment and knowledge drawn from literature on environmental sociol-
ogy, public narrative, and organizational theory are needed to inform
hypothesized mechanisms that generate inequalities in exposures and
health outcomes. In the environmental policy realm, cost–benefit
analyses may be needed. Policy levers identified using SD can be
evaluated using any of the conventional approaches for cost–benefit
analysis to estimate and compare the cost of one policy over another
(Lyneis and Sterman 2016;Woodruff et al. 2018). Further it is impor-
tant to note that all models, including traditional risk assessment and
statistical models, are just one input into policy decisions and cannot
remove uncertainty or the need for judgment.

Fundamentally, thesemodels—whether using a system of ordi-
nary differential equations or computer code for agent-based
models—do not create certainty in the way one might expect from
statistical distributions or confidence intervals. The fact that dis-
tributions and confidence intervals are often presented is mis-
leading in that they do not help us forecast an outcome in the way
we might want to predict the landfall of a hurricane or typhoon.
They do, however, describe the distribution based on the assump-
tions, and for this, we can draw on sensitivity analyses to help us
evaluate how sensitive our policies might be to our assumptions
(Sterman 2000). In particular, what simulations do offer is a way
to evaluate the policy impact of reducing uncertainty in our
assumptions.

Researchers cannot escape the mathematical fact that as
dynamic systems, there are certain fundamental limitations to what
can be drawn from laying out our assumptions and simulating their
implications (Meehl 1990). This should not dissuade researchers
from using computer models because the alternative—trying to
sort through an innumerable set of experiments empirically—is
simply not feasible in terms of resources of time, people, and
money (Forrester 1980). What researchers do need to be clear on,
however, is the importance of having sufficient resources for con-
ducting a rigorous and replicable program of sensitivity analyses
(Osgood 2009). In our opinion, the best way to do this is to focus
modeling efforts in ways that researchers can most efficiently
explore the implications of their assumptions.

This efficiency becomes especially important when we con-
sider the long time delays inherent to understanding the conse-
quences of cumulative exposures. By the time when we might be
confident based on empirical results about the systemic effects, it
will often be too late to prevent their longer term consequences
(Forrester 2007). As we have argued, simulation models, and
SD in particular because of the fast execution speed and feasi-
bility of both making assumptions transparent and conducting
sensitivity analyses, provide a unique way to help people appre-
ciate the impact of information delays on the dynamics of dis-
parities and a means to more critically evaluate interventions as
they unfold.

The approach we advocate for here and illustrate with the
proof-of-concept model of a feedback theory focuses on a sys-
tematic approach to developing and appraising feedback theories
(Meehl 1990). Specifically, the purpose of a model is generally to
provide a simplified and interpretable explanation for reality. If
models become so complex that it is no longer possible to readily
appraise the core theory, conduct the needed sensitivity analyses,
or interpret and communicate the results, then simulation models
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have lost their scientific value. Hence, simulation models of feed-
back theories should be developed with a core feedback theory in
mind, where the implementation of specific elements are treated
as auxiliary theories, in much the same way measurement models
are auxiliary theories to latent causal theories (Lakatos 1970).
This approach allows researchers to disaggregate structures when
policies are sensitive to a specific loop and aggregate details
when they do not affect final results. In this way, investigators
can systematically make scientifically informed choices about the
appropriate level of aggregation and available resources for
answering a policy question.

The time horizon for our proof-of-concept simulation model
(2012 to 2017 or 5 y) is not sufficient to reflect the longer-term
feedback effects of intergenerational stress and community and
structural vulnerability. Although the choice of a short time hori-
zon was made to more easily represent the individual growth
curves, the approach was developed to be feasible for much lon-
ger time horizons in order to develop systemic explanations
(Bunge 1997) that can be empirically tested for racial disparities.
Being able to explicate mechanisms that reflect potential feed-
back interactions between environmental exposures, biological
growth, and social repercussions over time is crucial to disentan-
gling the effects of cumulative environmental exposures (Bunge
1997), especially during a time when we are appreciating and
moving more toward precision medicine. Without this, we are
likely to fixate on efforts that reduce precision medicine to biol-
ogy while ignoring the potential explanations and opportunities
for precision prevention and social supports.

Currently, application of SD to environmental health
decision-making is limited, although there is growing interest
(Currie et al. 2018; Prochaska et al. 2019). It is an emerging field.
This may be a limitation, in that discussions about SD and envi-
ronmental health are currently too generic with too few examples
to learn from or compare against in terms of effectiveness of poli-
cies/decisions that resulted from the use of SD. Challenges asso-
ciated with the application of SD in policy include siloed
environmental health governance structures and the short time
scale policy makers tend to operate within. In our view, having
more evaluations of the SD in policy settings will help research-
ers and decision makers evaluate the merits of using SD. SD rep-
resents a significant potential bridge between environmental
management and human health but needs further demonstration.
As an initial step, we first focus in this article on the insights that
could be gained by applying systems approach to a specific envi-
ronmental health problem, children’s cumulative exposure to
neurodevelopmental toxicants. In this regard, we are contributing
to advancing the application of SD to better understand the com-
plex interactions of multiple chemical and social stressor expo-
sures on population health.

Summary and Recommendations
There is a growing body of evidence and scientific consensus about
the negative health impacts of multiple chemical exposures,
including evidence about additive and synergistic effects of com-
bined exposures to chemicals and social stressors. Unfortunately,
policy solutions to address this public health problem lag behind
the scientific consensus because environmental regulators continue
to rely on single chemical risk assessment as the basis for making
decisions. This status quo approach is being shaped by long-
standing mental models among environmental regulators who
separate and compartmentalize complex problems into policy
domains to be addressed by other agencies or sectors. This
approach directly contributes to fragmentation (Burke et al.
1997; Korfmacher 2019). Thus, we observe, environmental pol-
icy makers are blind to the consequences of their actions and to

how what they do is disconnected from a larger whole. The “reg-
ulatory bureaucracy system” resists change, whereby traditional
policy interventions based on single chemical risk assessment
may be rendered ineffectual or worse, exacerbate disparities,
potentially exacting a significant cost to public health, in our
view. This is particularly salient in the case of children’s expo-
sure to neurodevelopmental toxicants that exhibit the character-
istics of a complex adaptive system (e.g., increasing prevalence
of neurodevelopmental disorders, heterogeneity by race and
class, intergenerational effects and feedbacks).

Applying a systems science framework, specifically system
dynamics, to cumulative neurotoxicant exposures in children, we
argue, can illuminate a diverse array of relevant policy insights
made possible by shifting the predominant mental models of
environmental regulators and other stakeholders toward seeing
the system structures that create and maintain disparities in cumu-
lative chemical and nonchemical exposures and poor health out-
comes. This more holistic approach we believe will help to
identify effective policy levers for systems change (e.g., by refor-
mulating goals; by weakening, strengthening, or altering or add-
ing feedback loops). An SD framework provides not only a
language but also a set of methodological tools that can more eas-
ily operationalize existing multidisciplinary scientific evidence
and conceptual frameworks on cumulative risk. Using such
approaches may allow us, as public health researchers and practi-
tioners, to define more accurate diagnostic tools for children’s’
environmental health inequities that take into consideration the
broader social and economic environment in which the children,
live, grow, play, and learn. An SD approach can be used to dem-
onstrate how the macro-level dynamics of cumulative neurodeve-
lopmental exposures that have micro-level consequences for
early child development can serve as a generalizable model that
ensures decision-making on environmental policy includes appre-
ciation for the social determinants of health as well as the histori-
cal and cultural contexts that shape our daily lives.
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