Flexible Modeling Methods: Semiparametric-mixed Model & Functional Linear Model

Lu Wang, PhD

Associate Professor

Department of Biostatistics

University of Michigan

- Prenatal Exposure to PAH are clinically shown to affect fetal growth, development and survival
- Adverse fetal environment linked to long-term consequences

Window of Vulnerability:

- Variable Rate of Development for different organs
- Immature Immune Functions
- Greater Exposure per Body Weight

Hypothesis:

high exposure to airborne polycyclic aromatic hydrocarbons (PAHs) during the first trimester most significantly impairs fetal growth.

Birth cohort study, prenatal care clinics in Krakow, Poland (2000-2003)

- Outcome Data
 - Birth weight, Birth length, Birth head circumference
- Exposure Data
 - Personal exposure to PAH
 - Longitudinally measured over different gestational age

Discussion Point #1:

What are the potential challenges while you are processing the data?

Periodic Effect of Calendar month on PAH Exposure

Periodic Semiparametric Stochastic Mixed Model

- Outcome: the log of PAH measurement of the ith subject at time point t_{ii}. (i=1,...,m, j=1...n_i)
- n_i: number of observations of subject i, vary individually.
- Model:

$$\ln(PAH)_{ij} = x_{ij}^T \beta + f(t_{ij}) + b_i + U_i(t_{ij}) + e_{ij}$$

x : subject-level covariates

t: calendar month, changes within a subject

f: a smooth periodic function (period length=12)

b : subject-specific random intercept

U: mean 0 stochastic process with periodic variance

e : independent error

Discussion Point #2:

What are the unique model properties?

Semiparametric-mixed Effect Model:

$$Y_{ij} = x_{ij}^{T} \beta + f(t_{ij}) + b_{i} + Z_{ij}^{T} b + e_{ij}$$

Figure 2 Estimation of the cyclic nonparametric function f(t) in one cycle (— is the estimate, and ---- is the 95% confidence interval) and the predictions of individual prenatal PAH exposure during pregnancy based on semiparametric-mixed effect model. (A) Estimation of cyclic function f(t) in one cycle (b) predicted versus observed PAH.

Prediction Model for Fetal Growth

Functional Linear Model:

$$Z_{i} = \widetilde{x}_{i}^{T} \widetilde{\beta} + \int_{0}^{T_{d}} Y_{i}(s) \alpha(s) ds + \varepsilon_{i}$$

Z_i: birth outcome of baby i, e.g. birth weight.

Y_i(s): the PAH exposure curve of the ith subject evaluated at gestational age s.

x: other covariates

epsilon: measurement error

Discussion Point #3:

What is the main model difference compared to other parametric regression models?

Figure 3 The estimated regression coefficient function $\alpha(t)$ in functional linear model, that is, the effect of prenatal log PAH exposure on baby's log birth weight, birth length, and birth head circumference across gestational age t. — is the estimate and $-\cdot -\cdot -$ is the 95% confidence interval. (A) log Birth Weight, (B) Birth Length, (C) Birth Head Circumference.

Table 1 Estimates of the effects of other risk factors in the functional linear models of birth outcomes.

	log(Birth Weight)		Birth Length		Birth H-C	
	coefficient	p-value	coefficient	p-value	coefficient	p-value
Maternal height	0.002	0.041	0.056	0.025	0.030	0.023
Prepregnancy weight	0.003	< 0.001	0.046	0.003	0.027	< 0.001
log(Gestational Age)	2.261	< 0.001	36.37	< 0.001	14.10	< 0.001
Parity (yes versus no)	0.027	0.038	0.364	0.188	0.474	0.001
Newborn gender (girl versus boy)	-0.058	< 0.001	-1.078	< 0.001	-0.733	< 0.001
Whether c-section delivery	-0.020	0.204	0.278	0.421	0.403	0.027
Whether born in summer season	0.029	0.224	0.001	0.993	0.120	0.639

Recap Statistical Inference and Findings

- Using longitudinal semiparametric mixed effect model and functional linear models
 - We minimize the penalized least squares objective function using a spline-based expansion of the nonparametric functions.
 - The smoothing parameters are selected using GCV criteria.
- This study suggests that the vulnerability of fetus against high prenatal PAH exposure varies across different gestational age.
 - Hint a couple of critical windows of vulnerability for fetal weight and height development, during which the PAH exposure yields significant impairment.
 - Thus, reducing PAH exposure during these gestational windows may help for fetal weight and length development.
 - For birth head circumference, it appears to be affected more and more detrimentally across the gestational age, but no statistical significance is found.

Other Discussion Points....

- Treat time (e.g. gestational age) as a totally continuous variable, with day as unit, not month.
- Fixed integral bounds v.s. Random? Note actually the time interval from getting pregnant to delivery varies individually.

• e.g.
$$Z_i = \widetilde{x}_i^T \widetilde{\beta} + \int_{s_1}^{s_2} PAH_i(s)\alpha(s)ds + \varepsilon_i$$

s₁: time got pregnant

s₂: time for delivery

- Sparse of longitudinal measurements
- Potential bias from excluding non-full-term babies

Thank you!