
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Download by: [University of Michigan] Date: 11 April 2017, At: 09:10

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20

A Simulation Study of Alternatives to Ordinary
Least Squares

A. P. Dempster , Martin Schatzoff & Nanny Wermuth

To cite this article: A. P. Dempster , Martin Schatzoff & Nanny Wermuth (1977) A Simulation
Study of Alternatives to Ordinary Least Squares, Journal of the American Statistical Association,
72:357, 77-91

To link to this article:  http://dx.doi.org/10.1080/01621459.1977.10479910

Published online: 06 Apr 2012.

Submit your article to this journal 

Article views: 42

View related articles 

Citing articles: 47 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=uasa20
http://www.tandfonline.com/loi/uasa20
http://dx.doi.org/10.1080/01621459.1977.10479910
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/01621459.1977.10479910
http://www.tandfonline.com/doi/mlt/10.1080/01621459.1977.10479910
http://www.tandfonline.com/doi/citedby/10.1080/01621459.1977.10479910#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/01621459.1977.10479910#tabModule


A Simulation Study of Alternatives to 

Ordinary Least Squares 
A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH* 

Estimated regression coefficients and errors in  these estimates are 
computed for 160 artificial data sets drawn from 160 normal linear 
models structured according to factorial designs. Ordinary multiple 
regression (OREG) is compared with 56 alternatives which pull 
some or al l  estimated regression coefficients some or all the way 
to  zero. Substantial improvements over OREG are exhibited when col- 
linearity effects are present, noncentrality in  the original model is 
small, and selected true regression coefficients are small. Ridge re- 
gression emerges as an important tool, while a Bayesian ex- 
tension of variable selection proves valuable when the true regres- 
sion coefficients vary widely in importance. 

KEY WORDS: Least squares; Multiple regression; Ridge regression; 
Simulation; Variable selection. 

1. INTRODUCTION 

We report here summary results of a numerical study 
undertaken to compare the properties of a collection of 
alternatives to ordinary least squares for multiple linear 
regression analysis. The approach is a broad-brush ex- 
ploration of the relative performance, from the stand- 
points of estimation and prediction, of different tech- 
niques over a range of conditions which are syst,ematically 
varied according t o  factorial designs. The variable factor 
levels include different patterns of true regression coeffi- 
cients, different amounts of noncent.rality, and different 
degrees of collinearity or multicollinearity among inde- 
pendent variables. The substantive conclusions from the 
study are indications of possible drastic improvements 
over least squares, especially through the technique of 
ridge regression, and especially when a high degree of 
correlation exists among the independent variables. 

We have not attempted to study alternatives to stan- 
dard regression analysis which are designed t o  be robust 
against failures of the normal error model. Instead we 
have focused on the recently prominent difficulties with 
least squares under the normal model. From a frequentist 
standpoint, it has long been recognized that good mean 
squared error properties do not necessarily follow from 
the celebrated minimum variance unbiasedness proper- 
ties of least squares, since in certain regions of the pa- 
rameter space the loss from increasing the squared bias 
can be overcompensated by reducing variance. Important 
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work by Charles Stcin and his colleagues, (e.g., [l, 13, 
18]), has served t o  draw attention to the potential weak- 
ness of straightforward maximum likelihood estimation 
when more than a very few parameters must be estimated. 
Efron and Morris [4, 5, 6, 7, 8, 91 have recently extended 
and advocated the Stein approach at great length. Also 
taking a mainly frequentist point of view, Hoerl and 
Kennard [ll, 121 introduced and defended ridge regres- 
sion as having good mean squared error properties in 
practically relevant regions of the parameter space, at 
least when the independent variables multicorrelate 
strongly. (See [2, 10,171 for various views of ridge regres- 
sion.) From the standpoint of a subjectivist Bayesian 
theory, posterior mean squared error is substantially 
reduced if a flat prior distribution can be replaced by a 
prior distribution which clusters about some prior mean, 
taken here to be zero. (See [15, 211 for recent Bayesian 
discussions of Stein-type and ridge-type estimates.) 

Alongside the alternative regression methods just 
cited, the present study includes forward and backward 
selection methods and Bayesian selection procedures 
proposed in [S]. Thus, we hope to draw attention to the 
substantial improvements over ordinary least-squares 
methods which are afforded by a wide variety of alterna- 
tive methods. 

Our results are empirical results derived from numeri- 
cal experiments. Specifically, we created two series of- 
artificial data sets. The first series, referred to as Experi- 
ment 1, contains 32 data sets in the form of a Z5 factorial 
design, while the second series, or Experiment 2, contains 
128 data sets in the form of a quarter replicate of a 2g 
design. Each data set was drawn from a normal linear 
model with 6 regression coefficients to be estimated and 
14 degrees of freedom for error. Each of 57 estimation 
procedures was applied to each of the 160 data sets, 
yielding a set of 6 estimated regression coefficients, which 
were compared to  the true regression coefficients in the 
simulated models, using mainly the two end-point 
criteria SEB (sum of squared errors of betas) and SPE 

(sum of squared prediction errors). 
Basic notation, including precise definitions of SEB and 

SPE, appears in Appendix A. Further details of the 57 
estimation procedures appear in Section 2 and Appendix 
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B, while the design of the study is described in Section 3 
and Appendix C. The analysis of experimental data is 
presented in Section 4. Further detailed analyses may be 
found in Wermuth [19]. 

- The study is broad in some ways, e.g., in its range of 
estimation procedures and range of underlying models. 
In other ways, the study is narrowly focused, e.g., in its 
restriction to 6 and 14 degrees of freedom and its limita- 
tion to just one replication of each model. In view of the 
latter restriction, it is clear that we are not attempting 
detailed analysis of the frequency properties of estimators 
under each specified model, and so we are not meeting 
the objectives of the mathematical statistician who 
wishes to  calculate such frequency properties. We would 
prefer to shed light on the conceptually more difficult 
task of the data analyst, who knows only his data and 
not the underlying parameters. Our data base enables us 
to study the actual errors which a data analyst using 
specified rules of estimation would encounter under a 
simulated range of data sets which we believe could 
typify certain types of real world experience. 

Any particular user of regression techniques may 
legitimately criticize us for not including the specific 
variant procedures which interest him in the context of 
a specific class of real world situations. For such a reader, 
we believe that we have provided a concrete illustration 
of a type of study which can produce interesting or even 
startling results. Given adequate computational facility, 
whose availability continues to develop rapidly, the study 
could be repeated holding the design matrix X fixed at 
the values for a given data set and varying the factors 
and procedures of greatest concern to a particular data 
analyst, including of course the shape of the error distribu- 
tion and appropriate robust procedures, as may be in- 
dicated either by prior understanding of circumstances or 
by the properties of the given data set. We hope, there- 
fore, that we may be contributing to the development of 
a methodology which will ultimately be of broader use 
than the specific results of this paper. 

2. ALTERNATIVES TO LEAST SQUARES 
2.1 Overview 

The 57 estimation procedures under study can be 
grouped into several major classes or families each con- 
taining a number of variants. Both the classes and the 
variants within each class are denoted by capitalized 
abbreviations. For example, RIDGE denotes a family of 
ridge regression techniques, whilc within thc family we 
study five spccific procedures labelled SRIDG, RIDGM, 

CRIDG, ICRIDG, and ZCRIDG. 

The classes are distinguished by different technical ap- 
proaches adopted in the attempt to reduce error of estima- 
tion, but all approaches produce estimates which shrink 
or pull back the least-squares estimates toward the origin. 
Shrinking can be justified either by the frequentist yard- 
stick of improvement in the sum of variance and squared 
bias, or by the Baycsian device of a prior distribution 

more or less clustered about the origin. The two extremes 
in our list of procedures are OREG, or ordinary least 
squares, which does not shrink, and ZERO which achieves 
total shrinkage by setting all estimated regression coeffi- 
cients to zero. Between these extremes the procedures 
differ in the pattern and degree of shrinking. In Section 
2.2 we discuss procedures in the classes STEIN and RIDGE 

which shrink each estimate according to  a continuous 
formula, while in Section 2.3 me describe the families 
FSL, BSL, CP, REGF, RREG, and PRI which shrink discretely 
in the sense that selected coefficients are pulled back to 
zero, or nearly to zero. The concepts used to define 
specific variants within the families are described in 
Section 2.4. 

2.2 Continuous Shrinking Methods 

Following the notation est,ablished in Appendix A, the 
standard least-squares estimator b = ( X T x ) - ' X T Y  can be 
generalized to 

where Q is a positive definite symmetric matrix and k is 
a nonnegative scalar. In practice, Q is allowed t o  depend 
only on the design matrix X ,  while k is generally allowed 
to depend on Y as well. 

The choices Q = X T X  and Q = I in (2.1) define the 
classes of estimators which we call STEIN and RIDGE. 

The principal components transformation C defined in 
Appendix A simultaneously diagonalizes both X T X  and 
1, and therefore provides a simple representation for 
RIDGE estimators. After transforming we deal with 
& R  = Ca,, a = CB, and a = C@ where C is defined by 
(A.5) and (A.6). By transforming (2.1) we see that the 
components of ib and a are related by 

where 

8 = ( X T X  + kQ)"X'Y (2.1) 

d i R  = fiai  , i = 1, 2, . m - 1  p 1 (2.2) 

f i  = Xi/(Xi + k )  , (2.3) 

and X I ,  Xz, . . ., A, denote as in (A.6) the eigenvalues of 
X T X .  The analogs of (2.2) and (2.3) for the STEIN estima- 
tor &S = C@S are likewise seen to be 

di&q = fa; , i = 1, 2, . . ., p , (2.4) 

(2.5) 
where 

f = 1/(1 + k) . 

Note that the STEIN estimator 0s = f@, and so shrinks 
all components, whatever the coordinate system, by the 
same factor f. 

As remarked in Appendix A, the ai have independent 
N (ai, u2/Xi) sampling distributions, whence from (2.2) 
and (2.4) the d i ~  have independent N ( f i a i l  fi2U2/Xi) 

sampling distributions and the &is have independent 
N ( f a i ,  f"u2//x,) sampling distributions. For a given value 
of k, the f i  are smaller when the Xi are smaller, and at the 
same time the error variance 2 / X i  of $he least squares ai 
is larger. Thus the RIDGE approach applies more drastic 
shrinking where it has greater effect in reducing mean 
squared error. The STEIN approach by contrast shrinks 
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all components equally. The advantage of RIDGE is po- 
tentially large, therefore, when certain of the X i  are close 
to  zero, and when the loss function weights components 
equally, as does SEB defined in (A.lO) or (A.12). We may 
anticipate less advantage of RIDGE over STEIN when the 
loss function weights the components by Xi, as does SPE 

defined in (A.ll) or (A.13). 
The general estimator (2.1) has a simple Bayesian in- 

terpretation. If @ has the multivariate normal prior dis- 
tribution N (0, w z Q ~ l ) ,  then the posterior distribution of 
@ is N ( 0 ,  ( X T X / u 2  + Q / w Z ) - ’ ) ,  where 8 is determined by 
(2.1) with k given by 

k = u2/w2 . (2.6) 
Thus O R  is a posterior mean corresponding to  a prior 
N (0, w21) distribution for 0, and 8s is a posterior mean cor- 
responding to  a prior N ( 0 ,  w Z ( X T X ) - l )  distribution for @. 
In  principal component terms, if the ai are a priori  in- 
dependently N ( 0 ,  wz)  distributed, then they are a 
posteriori independently N (&in, fiuz/lxi) distributed for 
i = 1, 2, . . ., p .  The corresponding result for STEIN 

estimators is that if the ai are a priori  independently 
N ( 0 ,  wz/Xi)  distributed, then the a, are a posteriori inde- 
pendently N(&s, fuZ/Xi) distributed for i = 1, 2, . . ., p .  
For a Bayesian, therefore, the choice between RIDGE or 
STEIN hinges on whether he regards the prior variances 
of the ai to  be roughly equal or roughly inversely propor- 
tional to the hi. To assert that RIDGE is better in practice, 
is equivalent to  asserting that its prior assumptions are 
more nearly correct over the range of the statistician’s 
experience. Note especially that if the RIDGE prior is 
correct then the RIDGE estimator is optimum for any 
quadratic loss function, including both SEB and SPE. 
Corresponding remarks can of course be made about the 
Bayesian view of STEIN. 

The precise realization of a RIDGE or STEIN estimator 
requires a rule for determining k from the sample data. 
These rules are discussed in Section 2.4. 

2.3 Discrete Shrinking Methods 

We consider here six classes of estimation procedures 
which may be classified into three groups: Group 1 in- 
cludes FSL, BSL, and MCP;  Group 2 includes REGF and 
RREG ; and Group 3 includes PRI. 

Group 1 consists of methods which partition the com- 
ponents of @ into two subsets. The components in one 
subset are estimated by least squares under the constraint 
that  the components in the remaining subset are zero. 
The FSL or forward selection methods proceed by intro- 
ducing independent variables int.0 the least-squares pro- 
cedure one at a time, choosing at  each step the variable 
which produces the largest reduction in sum of squares 
a t  that  step. An FSL method chooses among a set of 
p + 1 partitions of the p independent variables, i.e., one 
partition which fits r variables for each of r = 0, 1, 
2, . . . , p .  The BSL or backward selection methods proceed 
by dropping variables one a t  a time from the complete 
least-squares fit in such a way that the increase in 

residual sum of squares is minimized at each step. A BSL 

method chooses among p + 1 partitions of the inde- 
pendent variables, one for each number r of variables 
selected, as do the FSL methods, but the set of partitions 
may differ between BSL and FSL, depending on the data 
set. The MCP methods consider all 2p possible partitions of 
the p independent variables and select one for fitting. 
The abbreviation MCP is an oblique reference to the C, 
statistic which Mallows [l6] uses as a criterion for select- 
ing among all possible regressions. The specific variants 
of FSL, BSL, and MCP used in our study are described in 
Section 2.4. 

From the standpoint of a Bayesian whose prior dis- 
tribution for @ is centered about the zero vector, the FSL, 

BSL, and CP methods have the weakness that  zero pos- 
terior estimates for a subset of @ components follow in 
general only from a prior judgment that  those com- 
ponents are precisely zero. In  practice it may be plausible 
to  judge a priori  that some subset of the @ components 
are close to  zero, but it would rarely be possible to match 
prior judgments with a subset chosen from the data by a 
somewhat ad hoc selection criterion. The REGF procedures 
proposed by Dempster [3] attempt to  soften the diffi- 
culty by supposing that soine subset of p - r independent 
variables have zero @ components, and supposing for 
fixed r that all (,!J possible subsets are a priori  equally 
likely. The equiprobability assumption might well be 
altered in real world practice, but is the most plausible 
assumption to  make in a study of automatic data analysis 
procedures. The precise definition of a REGF procedure 
requires a device for choosing r ,  and a specific rule for 
computing a posterior probability that each of the (,”) 
subsets is the true subset with zero regression coefficients. 
The least-squares estimates for each postulated set of T 

nonzero regression coefficients are then averaged over 
the posterior distribution of subsets to  yield the REGF 

estimator 8. 
The second class of procedures in Group 2, namely 

RREG, is a forward selection analog of REGF which avoids 
the necessity of computing least-squares estimates for 
all subsets of size r ,  a task which becomes increas- 
ingly onerous as r and p increase. An RREG procedure 
carries out the REGF procedure for r = 1, and then repeats 
the REGF r = 1 procedure on the residuals from the first 
paas, and so on until the residual sum of squares is judged 
to  be small enough. The RREQ estimate is formed by 
summing over the 8 produced by each application of 
REGF. We do not recommend that RREG should neces- 
sarily be pursued as a practical tool, in part because of its 
ad hoc nature and in part because the iterations were 
observed to  converge very slowly in the presence of even 
a few regressors which are highly collinear. 

Finally, the PRI procedures of Group 3 are selection 
procedures based on the principal components representa- 
tion of the model. Assuming that  the principal compo- 
nents, as defined in Appendix A, are ordered so that 
XI 2 Xz 2 . .  .2 A,, a commonly used procedure is to  
modify the least-squres estimate a of a so that  the last 
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p - T components are set to zero, yielding 

i = (Ul, a,, . . . , a,, 0, 0, . . . , 0) . (2.7) 

The corresponding B is computed as C T i .  A specific 
variant of PRI is defined by a rule for determining T .  

2.4 Fifty-Seven Varieties 

OREG and ZERO are single procedures, but each of the 
families STEIN, RIDGE, FSL, BSL, MCP, REGF, RREG, and PRI 

have several specific variants. Variants of three kinds are 
used. First, in the case of STEIN and RIDGE, there are 
methods which aim directly at  reducing squared error, 
whether through frequency concepts or through empirical 
Bayes concepts. Second, in the case of the remaining 
families, there are methods related to F tests for the 
significance of variables not yet included in the fit. 
Third, there are three methods associated with each 
family, indicated by the prefixes C, l C ,  and 2C, which 
control the maximum permissible deviation from the 
least-squares estimator b, where such deviation is mea- 
sured in terms of standard confidence contours about b. 

24.1. Continuous Shrinking Methods. In the RIDGE and 
STEIN classes, the specific variants are SRIDG, RIDGM, 

BCSTEIN. The precise definitions of the last three pro- 
cedures in each class are given in Section 2.4.5. The SRIDG 

procedure seeks to  minimize the frequentist expectation 
of the criterion SEB defined by (A.12). It is easily shown 
that this expectation is minimum when 

CRIDG, lCRIDG, ZCRIDG, and STEINM, CSTEIN, lCSTEIN,  

= Xi(krri2 - d) c = o .  
i=l (Xi + w 3  

The SRIDG method is defined by choosing k to satisfy 
(2.8), after s2 from (A.3) and &R from (2.2) are sub- 
stituted for 2 and a, in (2.8). The RIDGM and ATEINM 

methods are motivated by the Bayesian interpretation 
of RIDGE and STEIN discussed in Section 2.2. The prior 
distribution for the a, which leads to the posterior mean 
interpretation of RIDGE also implies that the observable 
least-squares estimators ai are marginally independently 
N ( 0 ,  w2 + a2/X,) distributed. It follows that the prior 
expectation of C ur2/ (w2 + $/hi) is p .  RIDGM chooses k to 
make this quantity equal to its prior expectation, when 
s2 is substituted for u2 and k = u2/w2. Similarly, the STEIN 

procedure is associated with a marginal N (0, (w2 + u2)/X;) 
distribution for the a,, and STEINM is defined by the choice 
of k such that C h i ~ ; ~ / ( w ~  + 8) equals its marginal 
expectation p ,  where again s2 is substituted for u2 and 
k = u2/w2. It is perhaps unfortunate that we did not 
adopt the specific choice of k recommended by Stein. In 
retrospect, however, we can see that Stein’s method would 
have performed worse on our data sets than STEINM, the 
reason being that improved estimates on our data sets 
require STEIN to shrink more than STEINM provides, while 
Stein’s recommendation shrinks considerably less. 

2.4.2. Subset Regression. The FSL variants group 
naturally into the three subclasses : FSLA, OFSL, i F s L  ; 

FSLN, 1 F s m ;  and CFSL, ICFSL, 2CFSL. The first two sub- 
classes are defined using different F statistics. Suppose 
that T variables have been included in the fit, and we are 
considering whether to include the (r + 1)st forward 
selected variable. Define 

and 
(2.10) 

where RSS; denotes the residual sum of squares after 
fitting the best forward selected t variables. F1 and F ,  
are F statistics with nominal degrees of freedom (1,  
n - T - 1) and ( p  - T ,  n - p ) ,  respectively. The spe- 
cific procedures FSLA, OFSL, and l F S L  are based on the 
statistics Fl computed at  each stage of selection. FSLA 

selects a further variable if the Fl test rejects at  level 
.05 / (p  - r ) ,  OFSL selects if F1 rejects at level .05, and. 
lFsL selects if Fl > 1. FSLA thus sets a fairly rigorous 
standard of significance for a variable to be included, 
OFSL uses a mild standard, and IFSL includes a variable 
if there is any indication at  all of positive effect with no 
requirement of a small tail area. Similarly, FSLN selects 
a further variable if F ,  exceeds its nominal .05 critical 
value, while IFSLN selects if F 2  > 1. The C, l C ,  and 2C 
variants will be defined in Section 2.4.5. 

The corresponding BSL variants are : BSLA, OBSL, l B s L  ; 
BSLN, ~ B S L N ;  and CBSL, lCBSL,  2CBSL. The first two sub- 
classes are again determined by the statistics F l  and F, ,  
still defined from (2.9) and (2.10) except that R S S ~  refers 
to residuals from the backward selected fit of t inde- 
pendent variables. At the stage of deciding whether to 
retain the (T  + 1)st variable or drop it from the fit, a 
value of Fl less than its nominal . 0 5 / ( p  - T )  critical 
value indicates dropping the variable under procedure 
BSLA. Level .05 is used similarly for OBSL, and the cri- 
terion F1 < 1 is used for IBSL.  BSLN drops the (T + 1)st 
variable if F z  is less than its nominal .05 level, while 
1 B s m  drops a variable if F2 < 1. 

In the case of CP procedures, t,he F I  criterion is not 
always sensible because the best variable set of size T + 1 
need not contain the best variable set of size T .  We there- 
fore consider only two subclasses : OMCP, l M c P  ; and CMCP, 
I c M c P ,  z c m p .  The procedures OMCP and l M c P  use Fz at 
nominal .05 level and F2 = 1, respectively, as criteria for 
passing from T to T + 1. 

2.4.3. REGF Methods. There are two parallel series of 
REGF methods, typically labelled REGF and DRGF, which 
are defined by alternative prior distributions of 0. The 
two series each appear in three subclasses analogous to  the 
three subclasses of FSL or BSL methods: FREGF, 1FREGF;  

OREGF, IREGF ; CREGF, ICREGF, 2CREGF ; and FDRGF, 

IFDRGF ; ODRGF, IDRGF ; CDRGF, ICDRGF, PCDRGF. 

The structure of each of these methods runs as follows. 
A non-Bayesian scheme is used to select an T on T = 0, 
1, 2, . . ., p ,  whereupon a Bayesian analysis takes over. 
The Bayesian analysis assumes that exactly T of the p 
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components of @ are nonzero, but assumes that all (:) 
possible subsets are equally probable a priori. Suppose 
that 9, denotes the class of (:) subsets consisting of r of 
the p independent variables. For each I E g,, a posterior 
probability o ( I )  is computed for the event that I is the 
true subset. Also, for each I E 9, we compute an estimate 
8 ( I )  whose components in the Z positions consist of least- 
squares estimatcs of the corresponding @ components, 
assuming that the remaining coefficients are all set to 
zero. These remaining coefficients are of course all esti- 
mated at zero in @(Z). The final estimator @ is defined to be 

B = c a B m  . (2.11) 
4 €9. 

The details of how to compute w ( I )  for each of the REGF 
and DRGF series are given in Appendix B. 

I n  Appendix B we also give reformulated definitions 
appropriate for REGF of the Fl and F z  criteria defined in 
(2.9) and (2.10). FREGF and RDRGF use a nominal .05 
critical level for the Fl criterion, and lFREGF and lFDRGF 

use Fl = 1 as the cutoff point, where in both cases larger 
values of F1 force an increase from r to r + 1.  The pairs 
OREGF, ODRGF and 1REGF, 1 D R w  operate similarly in 
relation to the Fz criterion. 

The RREG Variants are: RREGl ; and CRREG, ICRREG, 

ZCRREG. RREGl makcs repeated use of the FREGF tech- 
nique with r = 1 and stops when the F1 criterion as- 
sociated with FREGF fails to indicate proceeding from 
r = l t o r  = 2. 

2.4.4. Regression on Principal Components. The PRI 

variants are : PRIF, 1PRIF ; PRIB, l P R m  ; and CPRI, 1cPRi,  
~ C P R I .  The methods PRIF and PRIB both use the F z  cri- 
terion (2.11) a t  its nominal .05 level, while l P m F  and 
IPRIB use the critical value Fz = 1. The difference is that 
the F methods proceed through the estimators (2.7) in 
the order r = 0, 1, . . ., p while the B methods use the 
order r = p - 1, . . ., 0. 

2.4.5. Confidence Contour Constraints. Finally, we de- 
scribe the C,  lC, and 2C variants which are associated 
with each family. As is well known, an ellipsoidal 1 - a 
confidence region for @ centered at the least-squares 
estimate b is defined by 

(0 - b ) T X q ( @  - b)/ps2 I Fp,n-p, l -u  (2.12) 

where Fp,n-p,l-u denotes the level a critical value for F 
on p and n - p degrees of freedom. The idea of C ,  lC, 
and 2C methods is t o  limit the deviation of @ from b by 
requiring that @ lie within an ellipsoid of the form (2.12). 
This idea is similar to the limited risk proposal of Efron 
and Morris [4, 51. The C method uses a = .05 and the 
1C method uses Fp,n--p,l-u = 1. The criterion in the 2C 
method is that the residual sum of squares is allowed to 
rise by at most 20 percent. When p = 6 and n = 20, the 
2C criterion is equivalent to  the choice Fpsn- -p , l - - . !  = .46. 

Given any value of Fp,n--p, l -a  we can adjust the k in 
RIDGE or STEIN methods, or the r in the selection methods, 
in such a way that the resulting estimator B is shrunk as 
much as possible subject to the constraint (2.12). This is 

the guiding principle of all of the C,  lC, and 2C methods. 
For example, the ICMCP method chooses the best subset 
of independent variables of size r ,  when T is as small as 
possible consistent with (2.12), choosing the right side in 
(2.12) to be unity. 

3. DESIGN AND EXECUTION 

The plan of our study required drawing from the model 
(A . l )  with p = 6 and n = 20. Conceptually, this meant 
fixing X, @, and 2, and then drawing a random vector e 
using a standard normal random number generator. In  
practice, since all of our methods depend only on the 
sufficient statistics (A.2) and (A.3), we did not actually 
generate X, el or Y, but instead generated first XTX, and 
then b and (n - p)s2 ,  where the latter required ran- 
dom number generators to simulate the 6-variate 
N ( @ ,  uZ(XTX)-l) and XIh2 distributions. The 6-variate 
normal was found by linear transformation of 6 standard 
normal deviates and the X l 2  was found by summing the 
squares of 14 standard normal deviates. Uniformly dis- 
tributed pseudorandom numbers were generated by the 
algorithm described in [14], and were transformed to 
normal random deviates by a table look-up procedure 
applied to the cumulative normal distribution. Further 
details may be found in [19, 201. 

We made one drawing from each of 160 different 
models. The factors and factor levels of the Z5 structure 
of Experiment 1 are described. After creating and par- 
tially analyzing these data, we decided not simply to  
replicate Experiment 1, but instead to create a somewhat 
larger data set with more levels of certain factors and 
generally less correlation among the independent vari- 
ables. The result u*as the 128 simulated models of Experi- 
ment 2, also described. At this point we decided to 
analyze and report the results from Experiments 1 and 2 
without creating another series of models or drawing 
replicated data sets from the two available series. 

The five factors in Experiment 1 are labelled EIG, ROT, 

COL, CEN, and BET, The first three of these define the 
XTX matrix of a model. The two levels of factor EIG were 
determined by 

(3.1) 
T = diag (32, 25, 16, 9, 4, 1) 

= diag (64, 16, 4, 1, .25, .0625) 

where diagonal vectors of the diagonal matrices T should 
be regarded as preliminary eigenvalues of XTX. The two 
levels of EIG specified by (3.1) constitute one device for 
putting into the experiment variation in the amount of 
correlation among the independent variables. 

The two levels of ROT correspond t o  two replications of 
matrices with eigenvalues fixed by a given level of EIG. 

From a pair of 6 x 6 arrays of simulated standard normal 
deviates, a pair of random 6 X 6 orthogonal matrices G 
was created by Gram-Schmidt orthogonalization followed 
by scaling t o  unit length. We then formed the four inner 
product matrices GTTG corresponding to the four levels 
of EIG X ROT. Finally, these four inner product matrices 
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were reduced to four correlation matrices via scalar 
division of each row and column by the square root of its 
diagonal member. These correlation matrices specify the 
four choices of XTX actually used at one level of COL. Note 
that the eigenvalues of W T G  are given by T, but that 
these are no longer the eigenvalues of the final correlation 
matrices X T X .  

The second level of COL is defined by modifying the cor- 
responding X T X  at the first level so that it has .99 in the 
(1, 2) position, thus introducing substantial collinearity 
between the first two independent variables. The modifi- 
cation was not simply a replacement of the (1, 2) element 
by .99, which could have destroyed positive definiteness, 
but a linear transformation scheme described in Appendix 
C. We have now described, modulo G, the eight matrices 
X T X  used in Experiment 1, corresponding to the eight 
levels of EIG X ROT X COL. 

The factors CEN and BET jointly define @ and u2. CEN 

refers to two levels of the noncentrality parameter, 
specifically 

@T(XTX)O/c72 = 100 
(3.2) 

= 200 . 
The factor BET refers to two vectors of regression coeffi- 
cients, specifically 

@ = (32, 25, 16, 9, 4, 1) 
(3.3) 

= (64, 16, 4, 1, .25, .0625) . 

In  practice, two values of uZ were determined from (3.2) 
for each of the two vectors @ in (3.3). Since our endpoint 
criteria SEB (A.lO) and SPE (A.ll) are unaffected by 
scale changes @ + c@ and u .+ cu, we could equally well 
have set u arbitrarily and computed scalar multipliers 
from (3.2) for the @ vectors in (3.3). 

In Experiment 2, the factors are EIG at two levels, ROT 
at four levels, COL at two levels, MCL at two levels, CEN 

at four levels, and BET at four levels. The actual design is 
a quarter replicate of the 23 X 43 complete design. The 
preliminary eigenvalue levels of EIG in Experiment 2 
were changed to 

T = diag (30, 30, 30, 20, 20, 20) 
(3.1)’ 

= diag (64, 16, 4, 2, 1, .5) . 

For ROT we created four new random orthogonal matrices 
G by the same algorithm used in Experiment 1. The EIG 

and ROT levels were crossed as in Experiment 1, yielding 
now 2 X 4 = 8 correlation matrices XTX, which were 
further crossed with the factors COL and MCL to obtain 
8 X 2 X 2 = 32 correlation matrices XTX altogether. 
COL means the presence or absence of a deliberately in- 
troduced correlation .95 between XI and Xz, while MCL 

means the presence or absence of a deliberately introduced 
correlation .92 between XI  - XZ and X 3 ,  thus providing 
a partially hidden substantial correlation among the first 
three independent variables XI, Xz, and X3. The COL 
and MCL algorithms are described in Appendix C .  

Given XTX, the procedure for fixing 0 and u2 is the 

same as in Experiment 1, changing (3.2) to 

p’(X%)p/uZ = 100 
= 500 
= 10 
= 50 

and changing (3.3) to 

(3.2)’ 

e = (1, 1, 1, 1, 1, 1) 

= (1, 1, 1, 0, 0, 0) 
= (32, 16, 8, 8, 8, 8) 

= (32, 16, 8, 0, 0, 0) . 
(3.3)’ 

The experimental data sets were created and analyzed 
using the APL computer language as implemented under 
the CP-67 system at IBM Cambridge Scientific Center. 
An advantage of APL is that a large number of small but 
mathematically complex program units can be written 
and put together with relative ease. A disadvantage is 
that a large number of routine repetitions of the pro- 
grams, as would be required for standard large sample 
Monte Carlo, becomes prohibitively expensive due to the 
interpretive nature of APL. The programs described in 
[20] make it feasible to reproduce much of the data 
generation and analysis or to replicate the experiments if 
so desired. 

4. NUMERICAL RESULTS 
4.1 Overall Comparisons of 57 Methods 

Many different analyses were carried out for purposes 
of comparing the properties of the various estimators, and 
relating them to the design factors. Overall comparisons 
of the methods under study are provided in Table 1, 
which shows the mean values and medians of the two 
criteria, SEB and SPE, together with their ranks on the 57 
methods, for each of the experiments. The methods are 
arranged so as to put together different versions of the 
same method, as indicated by the extra space separating 
the ten different groups. 

Examination of Table 1 leads to a number of interesting 
observations. 

1. Ordinary regression (OREQ) is inferior to all nontrivial 
methods of estimation with respect to observed SEB averaged 
over each series of data sets. In the first experiment, it  is 
even worse than the trivial method of estimating all co- 
efficients to be equal to zero. 

2. The reductions in SEE, on average over the observed data 
sets, achieved by some of the methods under study are as 
large as 90 percent. 

3. Average reductions in SPE are a t  most 2030 percent, and 
ordinary least squares performs better than a number of its 
competitors on this criterion. These results corroborate our 
observation in Section 2.3 to the effect that the advantage 
of RIDGE over STEIN would be less on SPE than on SEB, since 
SPE weights individual components by xi .  

4. The methods which produced the best overall resulta were 
not the customary ones such as ordinary least squares, 
selection of variables, or regression on principal components, 
but rather versions of RIDQE and REQF. In particular, i t  is 
interesting to note that RIDQM was best with respect to mean 
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1.  Means and Ranks and Medians and 
Ranks of 57 Methods 

83 

1.  Continued 

Experiment 7 Experiment 2 

Method Mean Rank Mean Rank 

SEB SPE SEE SPE SEB SPE SEB SPE 

a. Means and ranks 

Experiment 7 Experiment 2 

Method Mean Rank Mean Rank 

SEE SPE SEB SPE SEB SPE SEB SPE 

OREG 542.86 
ZERO 143.92 

FSLA 93.59 
CFSL 84.35 
~ C F S L  93.13 
2CFSL 466.92 
OFSL 78.61 
1FSL 215.22 
FSLN 80.03 
IFSLN 479.95 

BSLA 76.22 
CBSL 78.43 
~ C B S L  273.01 
2CBSL 499.55 
OBSL 78.88 
~ B S L  461.50 
BSLN 77.50 
~ B S L N  421.26 

CMCP 78.91 
1CMCP 272.53 
2CMCP 493.32 
OMCP 81.47 
1MCP 416.98 

CPRl 73.75 
1CPRl 66.10 
2CPRl 131.44 
PRlB 100.25 
1PRlB 355.37 
PRlF 102.37 
~ P R I F  363.24 

STEINM 482.16 
CSTEI 219.56 

2CSTEI 386.46 

SRIDG 65.02 
RlDGM 45.16 
CRlDG 69.51 

2CRIDG 52.25 

CREGF 57.67 
1CREGF 60.76 
2CREGF 137.73 

1 CSTEI 325.61 

~CRIDG 53.85 

OREGF 56.76 
~ R E G F  355.31 

1 FREGF 379.35 

1 CDRGF 126.37 

ODRGF 56.52 
~ D R G F  416.96 

1 FDRGF 457.61 

RREGI 59.00 

ICRREG 52.61 

FREGF 49.32 

CDRGF 56.97 

2CDRGF 327.46 

FDRGF 52.20 

CRREG 62.15 

2CRREG 54.30 

5.70 57 27 
150.00 35 57 

8.26 29 47 
8.12 27 46 
4.56 28 10 
4.82 52 17 
4.78 22 16 
4.89 36 20 
6.86 25 39 
4.93 53 21 

5.96 19 29 
7.97 21 45 
5.06 39 24 
4.87 56 19 
4.77 23 13 
5.16 51 26 
7.38 20 41 
4.97 49 23 

7.55 24 43 
4.83 38 18 
4.76 55 12 
6.74 26 37 
4.78 48 15 

11.46 18 53 
6.82 16 38 
6.01 33 30 
8.51 30 49 
6.11 43 31 
9.21 31 52 
6.35 44 ,33 

5.94 54 28 
24.17 37 56 
11.76 40 54 
8.30 46 48 

6.57 15 36 
4.95 1 22 

21.17 17 55 
9.00 6 51 
6.13 4 32 

7.54 11 42 
4.01 13 2 
3.90 34 1 
6.50 9 35 
4.39 42 8 
4.15 2 6 
4.75 45 11 

7.56 10 44 
4.12 32 4 
4.02 41 3 
6.50 8 34 
4.42 47 9 
4.14 3 5 
4.78 50 14 

6.96 12 40 
8.97 14 50 
5.11 5 25 
4.35 7 7 

78.37 
134.19 

68.42 
61 :63 
51.53 
63.42 
56.27 
60.09 
52.46 
66.02 

64.34 
67.83 
65.58 
60.84 
58.39 
71 3 1  
60.86 
74.20 

65.17 
66.50 
64.48 
56.46 
75.89 

28.12 
27.72 
51.09 
39.36 
61.92 
27.34 
55.57 

63.40 
40.26 
46.86 
53.94 

25.76 
17.59 
29.29 
18.71 
17.48 

52.97 
46.53 
38.60 
44.86 
58.76 
42.89 
65.87 

53.32 
48.88 
43.95 
45.13 
58.92 
54.80 
67.59 

60.53 
53.18 
42.64 
38.23 

6.26 
165.00 

16.37 
10.38 
6.79 
6.04 
7.69 
6.08 
8.88 
8.03 

9.94 
11 3 7  
7.33 
6.33 
7.23 
6.23 
9.82 
6.36 

10.52 
7.02 
6.36 
9.18 
6.17 

8.58 
6.02 
5.94 
7.13 
6.15 
7.50 
6.03 

5.84 
16.41 
8.54 
6.55 

5.51 
4.98 

14.48 
6.84 
5.25 

9.73 
6.40 
5.54 
8.08 
5.62 
7.45 
5.92 

, 9.66 
6.30 
5.55 
7.92 
5.62 
7.48 
5.90 

10.49 
10.22 
6.31 
5.73 

56 21 
57 57 

52 55 
39 50 
22 29 
42 16 
30 38 
35 17 
23 43 
48 14 

43 48 
51 53 
46 34 
37 24 
32 33 
53 20 
38 47 
54 25 

45 52 
49 31 
44 26 
31 44 
55 19 

7 42 
6 13 

21 12 
11 32 
40 18 
5 37 

20 15 

41 9 
12 56 
19 41 
27 28 

4 3  
2 1  
8 54 
3 30 
1 2  

24 46 
18 27 
10 4 
16 40 
33 7 
14 35 
47 11 

26 45 
20 22 
15 5 
17 39 
3 4 6  
28 36 
50 10 

36 51 
25 49 
13 23 
9 8  

OREG 
ZERO 

FSLA 
CFSL 
1 CFSL 
2CFSL 

1 FSL 
FSLN 

OFSL 

~ F S L N  

BSLA 
CBSL 

2CBSL 

1 BSL 
BSLN 
1 BSLN 

CMCP 
1 CMCP 
2CMCP 
OMCP 
1 MCP 

CPRl 
1 CPRl 
2CPRI 
PRlB 

1 CBSL 

OBSL 

1 PRIB 

1 PRIF 
PRlF 

STEINM 
CSTEI 
1 CSTEI 
2CSTEI 

SRIDG 
RlDGM 
CRlDG 
1 CRIDG 
2CRlDG 

CREGF 

2CREGF 
OREGF 

FREGF 
1 FREGF 

CDRGF 

2CDRGF 
ODRGF 
1 DRGF 
FDRGF 

1 CREGF 

1 REGF 

ICDRGF 

1 FDRGF 

R R E G ~  

1 CRREG 
CRREG 

2CRREG 

178.83 
128.87 

62.15 
39.55 
33.23 
58.77 
40.06 
56.71 
45.09 
49.95 

25.20 
31.1 1 
27.97 
37.29 
31.87 
54.93 
27.15 
37.29 

31.1 1 
46.40 
49.07 
31.1 1 
39.53 

57.82 
43.36 
47.27 
53.40 
49.37 
57.75 
58.36 

161.79 
91.07 

1 13.48 
129.22 

42.75 
31.87 
57.69 
42.59 
36.72 

25.43 
21.21 
24.62 
25.43 
28.68 
18.88 
32.59 

25.49 
23.21 
35.67 
25.49 
42.03 
19.77 
77.45 

29.51 
30.69 
23.57 
22.30 

b. Medians and ranks 

5.57 57 33 
150.00 54 57 

5.28 50 27 
6.01 30 40 
3.02 24 3 
4.36 49 19 
3.53 31 10 
4.79 44 25 
6.12 36 42 
4.72 41 22 

4.86 8 26 
6.27 18 46 
3.31 14 7 
4.23 27 17 
3.92 21 13 
5.43 43 28 
6.69 13 47 
4.76 28 23 

3.31 37 l9 4i 
4.13 39 16 
5.97 20 39 
4.35 29 18 

11.63 47 54 
5.46 35 30 
5.69 38 35 
6.99 42 49 
5.57 40 34 
8.62 46 52 
5.71 48 36 

5.50 56 31 
24.55 52 56 
11.39 53 53 
7.23 55 50 

6.25 34 45 
3.93 22 14 

20.72 45 55 
8.29 33 51 
5.54 26 32 

6.18 9 43 
3.09 3 4 
3.27 7 6 
5.87 10 38 
4.47 15 20 
2.77 1 1 
4.66 23 21 

6.21 11 44 
3.17 5 5 
3.33 25 9 
5.78 12 37 
4.05 32 15 
2.78 2 2 
4.76 51 24 

5.44 16 29 
6.94 17 48 
3.90 6 12 
3.57 4 11 

25.94 
55.42 

31.1 1 
30.36 
23.24 
20.22 
24.12 
19.47 
26.80 
20.31 

33.76 
33.34 
28.51 
25.32 
28.99 
25.30 
31.11 
25.31 

30.36 
24.39 
24.96 
27.70 
20.31 

13.05 
9.41 

12.93 
11.24 
15.00 
11.92 
12.93 

19.42 
18.36 
15.87 
17.60 

8.16 
7.43 

16.98 
10.13 
8.08 

22.80 
18.58 
15.47 
19.99 
14.38 
18.59 
19.09 

23.08 
19.92 
15.35 
21.07 
14.95 
17.65 
21.11 

21.56 
23.17 
18.53 
14.91 

5.05 46 24 
75.00 57 57 

8.23 54 52 
7.86 51 49 
5.19 39 26 
4.84 30 16 
5.96 40 36 
4.83 27 15 
7.76 47 47 
4.87 31 17 

7.74 56 46 
8.78 55 53 
5.90 49 35 
5.32 45 29 
5.62 50 33 
4.90 43 20 
7.91 53 51 
5.43 44 30 

7.91 52 50 
5.43 41 31 
5.29 42 28 
7.78 48 48 
5.26 32 27 

7.04 10 42 
5.03 4 22 
5.02 8 21 
6.58 6 37 
5.14 14 25 
6.72 7 39 
5.03 9 23. 

4.68 26 11 
14.99 21 56 
7.51 17 43 
5.51 19 32 

4.54 3 10 
4.11 1 1 

11.94 18 55 
5.71 5 34 
4.53 2 9 

7.67 36 45 
4.45 23 8 
4.11 16 2 
7.03 29 41 
4.35 11 7 
4.89 24 19 
4.82 25 14 

7.61 37 44 
4.35 28 6 
4.18 15 3 
6.85 33 40 
4.28 13 4 
4.79 20 12 
4.81 34 13 

6.59 35 38 
9.24 38 54 
4.87 22 18 
4.29 12 5 
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SEB in the first experiment and second best in the second. In  
the latter instance, another version of RIDGE, namely ~ C R I D Q  

was slightly better than RIDGM. On the basis of median, 
rather than mean values, FREQF was best on both criteria in 
the first experiment, while RIDGM was the number one per- 
former in the second experiment. Comparisons of RIDQY 

against OREQ indicated improvements in average SEB of 
approximately 92 and 78 percent in the two experiments. 
RIDQM was also the best method on average SPE in Experiment 
2, providing a reduction of 20 percent. In the first experiment 
it ranked only 22nd on mean SPE although it still provided 
an average reduction of about 14 percent. 

5. The data do not indicate any consistent patterns of behavior 
with respect to variations in the confidence levels employed 
in the confidence contour procedures, or in the significance 
levels used in the various selection-type methods. In most 
instances, changes in level produced opposite effects on the 
two criteria. For example, referring to Table 1, for the PRI 

and STEIN methods, variations from C to 1C to 2C were 
generally accompanied by improved SPE, but degraded SEE. 

In other cases, such as BSL, REGF, and DRGF, the directions 
of change on SEE were opposite in the two experiments. 
Similar observations could be made with respect to choice 
of level for the various selection methods. Since the per- 
formance of these techniques is generally sensitive to the 
particular choice of level, their use can be risky. 

4.2 A Closer Look at Selected Methods 

In  this section, we focus our attention on six particular 
methods, with the objective of learning more about their 
detailed behavior patterns. The selected methods are 
representative of the total spectrum of 57 methods in that 
they include a member of each major class of pullback 
procedures, as follows : 

T y p e  of pullback 

None 
Selection of variables 
Principal components 
STEIN 

RIDQE 

REQF 

Selected method 

OREQ 

OFSL 

PRIF 

STEINM 

RIDGM 

FREQF 

The specific choice of a member within each class was 
based on performance within the group, and similarity 
to  procedures used in current practice. For example, 
RIDGM was chosen to  represent the RIDGE class of estima- 
tors, because it appeared to  be the best performer within 
that  class. However, PRIF was chosen to  represent the 
principal component class of estimators, even though 
1cPRI  seemed to  be a better performer, because the type 
of selection procedure used by PRIF is more commonly 
used in practice. The OFSL, PRIF, and FREGF methods are 
comparable to  one another in the sense that they all 
employ forward selection procedures, and use stopping 
rules based on significance a t  the .05 level. 

The reason for simulating the performance of these 
methods is, of course, that  desired distributions of estima- 
tion error can usually not be calculated analytically. In  
one instance, however, that of RIDGE regression, we can 
calculate stochastic lower bounds for frequentist expecta- 
tions of our two criteria. It is of interest then to  determine 
how closely RIDGM approximates these lower bounds, and 

to  compare the performance of the other methods with 
these bounds as well. A description of the bounds follows. 

In terms of the principal components transformation C 
defined in Appendix A, minimization of SEB (or SPE) in 
the direction of the ith principal axis, for estimators of 
the form fiai, results in 

where ki = (u/ai)). One cannot use t,his estimator in 
practice, because the ki are unknown. However, we can 
calculate the ki for every sample in our simulation study, 
since we know the values of u and a. The estimates based 
on (4.1) are referred to  below as OPT. 

OPT is similar in form to RIDGE except that there is 
now a separate factor ki along each principal axis. OPT 

provides a stochastic lower bound for RIDGE methods be- 
cause it has additional degrees of freedom and also uses 
true, rather than estimated, values of the adjustment 
factors. The frequentist expectations of our two criteria 
for OPT are given by 

P 

EOPT(SEB) = C f i h  (4.2) 
1 

and 
P 

EOPT(SPE) = C f i  , (4.3) 
1 

A. CUmU/afiVe Distributions Of  fop^ (SPE)/E  REG (SEB) 
by Noncentrality Level, Experiment 1 

0 

ORDERED OBSERVATIONS 
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whereas the corresponding expectations for ordinary 
regressions are 

P 

EOREG(SEB) = C 1 / X i  (4.4) 

EORCG(SPE) = p . (4.5) 

1 
and 

In  evaluating the performance of different regression 
methods, we can use (4.1)-(4.5) in two ways to provide 
stochastic lower bound type comparisons. First, if we 
pretended that we knew the values of the fi, we could 
apply these factors t o  the sample data, and evaluate the 
actual performance of OPT on such data. Second, the 
ratios of the corresponding expected values, (4.2)/ (4.4) 
and (4.3)/(4.5), provide information as to the expected 
gains in SEB and SPE which could be realized by using the 
optimal pull-back procedure. 

The shrinking factor f i  can be interpreted in terms of 
the noncentrality parameter, Aiz, along the ith principal 
axis, as 

fi  = Ai2/(1 4- A?) . (4.6) 

Thus, when the noncentrality parameter is large, the 
shrinking factor is close to  one, showing that least 
squares is asymptotically efficient. 

B. Cumulative Distributions of fOPT(SPE)/EOREG (SEE) 
by Noncentrality Level, Experiment 1 

io 

I I 1 
5 10 15 
ORDERED OBSERVATIONS 
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C. Cumulative Distributions of EOpT(SEE)/fOREG (SEE) 
by Noncentrality Level, Experiment 2 

Ratio 

.9 - 

.8 - 
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.5 - 

.4 - 

.3 - 

.2 - 

.1 - 

500 

100 

50 

0 

ORDERED OBSERVATIONS 

One view of the particular parameter sets chosen for 
our two series of data sets is given in Figures A-D, which 
present' cumulative sample distributions of the ratio of 
EOPF to EoREG for each of the criteria, by noncentrality 
level. It is readily apparent from these graphs that op- 
portunities for large improvements via shrinking are 
greatest for small noncentralities. This property is borne 
out in our observed data, as illustrated in Table 2 which 
shows for the various methods the ratios of observed 
mean criterion values (SEB and SPE) to corresponding 
least-squares values, separately by noncentrality level. 
Generally, the largest relative gains have been achieved 
at the lowest noncentralities. This is particularly evident 
for SEB, which has larger expected gains that does SEP. 

Further insight into the relative performance proper- 
ties of the selected estimators is provided by Figures E-H, 
which show the cumulative sample distributions of the 
ratios of the observed values of the criteria for each of 
the methods, to their corresponding least-squares ob- 
served values. Examination of the SEB graphs (Figures 
E and G) shows that STEINM is the most conservative 
procedure of those being compared, in that it most 
closely approximates OREG. It provides improved per- 
formance in most cases (80 percent of the cases for 
Experiment 1, and 90 percent for Experiment 2), al- 
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D. Cumulative Distributions of Eom (SPE)/EOREG (SPE ) 
by Noncentrality Level, Experiment 2 

ti0 

I 1 I I I I 
5 10 15 20 25 30 

ORDERED OBSERVATIONS 

I 

2. Ratios of Average Criteria Values for Individual 
Methods to Those for Least Squares, 

by Noncentrality Level 

Experiment 7 Experiment 2 

Method NCP 

700 200 70 50 700 500 

OFSL 
PRlF 
STEINM 
RlDGM 
FREGF 
EOPT 
0 PT 

OFSL - 
PRlF 
STEINM 
RlDGM 
FREGF 
€OPT 
OPT 

SEB - 
.07 .46 .22 .49 1.03 .94 
.14 3 8  .13 3 1  .39 .46 
.88 .92 .38 .78 .90 .97 
.05 .25 .09 .21 .27 .27 
.04 .31 .12 .37 .65 .84 
.03 .04 .03 .09 .12 .20 
.03 .21 .06 .09 .17 .19 

SPE - 
.65 1.06 .88 1.37 1.43 1.17 

1.70 1.54 1.14 1.26 1.13 1.22 
1.02 1.06 .75 1.03 .93 .98 
.80 .94 6 1  .88 .78 .88 
.57 .91 .73 1.50 1.30 1.10 
.59 .66 .34 . .53 .61 .72 
.54 .77 .35 .53 .61 .71 

though the improvements are not as large on the average 
as those produced by the other methods. It also is less 
risky than the others in the sense that it seldom produces 
large degradations with respect to  least squares. 

E. Cumulative Distributions of SEE Ratios, 
Experiment 1 

Ratio 

/ I r F R E G F  

5 10 15 20 25 30 
ORDERED OBSERVATIONS 

The FREGF procedure appears best on both criteria in 
Experiment 1, while RIDGM is the clear winner in Experi- 
ment 2. These conclusions are borne out also by Table 1, 
which shows that  FREGF and RIDGM have the smallest 
median values on the two criteria for Experiments 1 and 
2, respectively. The apparent reason for the reversal in 
performance from Experiment 1 to 2 is that  FREGF is 
affected by the distribution of beta values, whereas 
RIDGM is not. In  general, the performance of FREGF im- 
proves as the distribution of the beta values becomes more 
skewed, and as the degree of truncation (i.e., number of 
zero or near-zero values) increases. In  Experiment 1, the 
mean SEB for RIDGM was approximately the same (46.2 
and 44.1) a t  both levels of BETA, while the corresponding 
values for FREGF decreased from 75.1 to  23.5, for BETO 

and BETl ,  respectively. Thus, the sharply improved per- 
formance of FREGF a t  B m 1 ,  corresponding to  the extreme 
distribution (64, 16, 4, 1, 25 ,  .0625), appears to be re- 
sponsible for the better overall performance of FREGF in 
the first experiment. 

' 
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F. Cumulative Distributions of SPE Ratios, 
Experiment 1 

tio 

/pR'F 

5 10 15 20 25 30 
ORDERED OBSERVATIONS 

Comparisons of the distributions of SPE ratios (Figures 
F and H) yield similar results. Again, FREGF appears to  
be the best choice in the first experiment, while RIDGM 

looks best in the second. 

4.3 Effects of Design Factors 

In  this section we assess further how the design factors 
affect the performance of the various methods. Log- 
arithmic transformations were carried out on both SEB 

and SPE values because they have highly skewed chi- 
square distributions. Normal probability plots of the log- 
transformed sample values indicated reasonably normal 
behavior. 

Initial analyses treated the data simply by computing 
analyses of variance and looking for significant main 
effects and first-order interactions. A typical analysis of 
this type for l o g s ~ ~ ,  Experiment 2, is presented in 
Table 3 for OREG, OFSL, STEINM, RIDGM, and FREGF. It 
shows F values for main effects and first-order interac- 
tions, together with signs of the effects, for all effects 
which are significant at the .05 level. The error sums of 
squares are based on pooling of second- and higher-order 
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cant interactions, and that they generally have much 
smaller F values than the significant. main effects. In  the 
case of OREG, there are no significant interactions at all. 
For most methods, eigenvalue structure, multicol- 
linearity, and noncentrality are significant. Noncentrality 
is a significant factor in all methods except for OREG, and 
performance of each of these methods degrades, as pre- 
viously noted in Section 4.2, as the degree of noncentrality 
increases. 

The largest effect in OREG is the eigenvalue structure, as 
might be expected from (4.4). Collinearity and multicol- 
linearity also have significant effects in OREG, displaying 
approximately the same F values and directions. The 
effects of rotation are not significant, which provides 
some reassurance as to the validity of the experimental 
results, since the random rotations can be regarded as 
replications in the case of ordinary regression. 

The effects of the regression coefficient structure are 
significant only for those methods which select variables 
(ie., OFSL and FREGF). The coefficient, structure has no 
effect on OREG, a result which should be expected since 
EORE~(SEB) does not depend on the coefficient structure. 
Nor is it a significant factor in the smoother pull-back 
procedures RIDGM and STEINM. 

A closer examination of the data is provided by Table 

G. Cumulative Distributions of SEE Ratios, 
Experiment 2 

Ratio 

I I 1 I I I 
120 .01 20 40 60 80 100 

interactions. We note that there are relatively few signifi- ORDERED OBSERVATIONS 
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H. Cumulative Distributions of SPE Ratios, 
Experiment 2 

Ratio 

20 40 60 80 loo I20 
ORDERED OBSERVATIONS 

4 which presents the mean differences in l o g s ~ ~  and 
l o g s p ~  between each of five methods and either OREG, 

RIDGM, and FREGF. The results differ somewhat in the two 
experiments, but the overall picture is unchanged. Least- 
squares estimation (SEB) is strongly improved by FREGF, 

1 c P q  and RIDGM in both experiments, and outstanding 

3. F Values for .05 Level Significant Effects, 
Together with Signs of Effects, for 

Log SEB, Experiment 2 

OREG STEINM RIDGM FREGF OFSL 

EIG 57.42 65.17 40.14 24.94 28.85 
MCL 16.81 15.91 6.00 10.69 13.90 
COL 15.43 13.68 
C E N ~  12.92 28.80 27.16 13.74 
CEN2 - 
Beta shape 
Beta truncation 
EIG X COL 
EIG X CEN2 
MCL X CEN1 
MCL X CEN2 
COL X CEN2 
CENl X CEN2 

MCL X ROT1 
C E N ~  x beta trunc 

-8.00 -32.36 -59.46 -42.19 

-15.45 
-5.41 

-8.98 -7.65 

-6.61 -13.97 
-6.71 

-4.28 -7.64 

-5.16 

10.68 

8.29 6.16 19.94 23.06 

4.53 

gains over least-squares prediction (SPE) are either ob- 
served for FREGF (in Experiment 1) or for RIDGM (in 
Experiment 2). From the paired comparisons with RIDGM 
it can be seen that  FREGF is its only serious competitor. 
STEINM gives significantly larger estimation and predic- 
tion errors in both experiments, and generally, OFSL and 
lcpm give worse results as well. The classical selection-of- 
variables method OFSL turns out to  be clearly inferior t o  
the Bayes approach to  variable selection : the significantly 
larger estimation errors of OFSL relative to  FREGF in both 
experiments are not counterbalanced by smaller predic- 
tion errors. 

4. Mean Differences in Logs SEB and SPE 

Compared methods Standard Experi- 

/?lethod ment OREG OFSL FREGF 1CPRl RIDGM STEINM 

OREG 1 
2 

AlDGM 1 1.32b 
2 1.1P 

FREGF 1 1.76b 
2 0.4gb 

OREG 1 
2 

RIDGM 1 0.15 
2 0.2gb 

FREGF 1 0.66b 
2 0.15 

SEB - 
-1.14b -1.76b 
-0.14 -0.4gb 

0.12 -0.44 
0.9Eb 0.63b 

0.61 
0.36b 

SPE - 
-0.41a -0.66b 
-0.04 -0.15 

-0.27 -0.51b 
0.25b 0.14 

0.25b 
0.1 1 

-0.99b 
-0.84b 

0.33 
0.27b 

0.77 
-0.35b 

0.10 
-0.10 

0.25a 
0.19b 

0.76b 
0.05 

-1 .32b 
-1.12b 

0.44 
-0.63b 

-0.15 
-0.29 

0.51 
-0.14 

-0.05 
-0.22b 

1 .26b 
0.85b 

1 .70b 
0.23 

0.06 
-0.08 

0.21b 
0.20b 

0.72b 
0.06 

~~ ~ 

Indicates signlficance at the 0.05 level. 
Indicates significance at the 0.01 IEVEI. 

The next level of analysis attempted to  introduce the 
eigenvalue and noncentrality structures into the regres- 
sion models in such a way as to  reflect the ways in which 
they enter the expressions for the expected values of our 
two criteria, as given by (4.2)- (4.5). Specifically, using 
SEB as an example, we attempt to partition the 
total sums of squares of log SEB into components due 
to log EOPT(SEB), (log EOREG(SEB) - log EOPT(SEB)), 
(log SEBOREG - log E o R E G ( ~ ~ ~ ) ) ,  and components due to  
the various design factors. 

The results of these analyses are presented in Table 5,  
which shows F values corresponding to  terms in the 
models together with the squared multiple correlation 
coefficients. The rows of the tables are ordered according 
to  the sequence of introduction of terms into the regres- 
sion models. In  all cases, error sums of squares are based 
on pooled interactions of all orders. In  all of these 
analyses, the salient feature is that most of the explained 
variation is, associated with the partitioning of the co- 
variate (i.e., log SEBORE or log SPEOREG) into its indicated 
components. Thus, after introducing these terms, which 
represent specific formulations of the ways in which the 
eigenvalue and noncentrality structures affect the re- 
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5. F Values for Regression Models 

Experiment 1 Experiment 2 Regression 
model OPT PRlF STEINM RIDGM FREGF OFSL OPT PRlF STEINM RIDGM FREGF OFSL 

Rotations 
Log ( X f A )  

Log (SEE OREG/X~/AI) 
Log NCP 

Log (XlIAi)/(Zfi/Ai) 

EIG 
MCL 
COL 
Beta level 
Beta shape 
Beta trunc 
R= 

Rotations 
Log SPE OAEG 

Log NCP 
EIG 
MCL 
COL 
Beta level 
Beta shape 
Beta trunc 
RP. 

Log Xf, 

4.68" .81 
64.43b 16.43b 

.03 .18 

.74 3.65 

.OO 2.07 

.06 . .05 

.82 2.15 

. l l  3.48 

.75 .56 

8.51b 4.63" 
2.74 63.70b 

76.07b .03 
6.96" .03 

.64 .12 

.03 .15 
2.49 .15 

.80 .74 

.93 
19.13b 

341 7.9gb 
2329.73b 

.36 

.01 

.01 

.35 

1 .oo 

.55 

.Mi 

.98 

.98 

.01 

2 7  
.oo 

.11 

9.24b 
60.06b 

1.60 
4.21 
3.05 

.46 

.78 
1.08 

.78 

.95 

.18 
1 .81 
.33 
.07 

.87 

.03 

.15 

a. Log SEB 

2.51 2.63 
2.83 5.29" 
5.70a 21.16b 
3.45 4.73" 

.07 .19 

.OO .66 

3.20 3.48 
11.54b 12.80b 

5 6  .69 

b. Log SPE 

1.12 .05 
1.03 .35 

22.56b 49.80b 
1.08 1.21 
.33 .43 

3.81 7.69" 
.89 .07 

.56 .71 

2 6  
290.8gb 

1.20 
8.38b 

.04 
1.33 
2.92 
.13 

1.05 
227.1 1 

1.93 
11.22b 
1.77 
1.30 
5 9  
.39 

5.10b 
591 .53b 
762.2Zb 

11 80.22b 
43.91 

.82 

.02 

.01 

.84 
173.73b 

4.47" 
46.04b 
4.83" 
.85 

3.31 
.oo 

.76 
105.24b 

3.93" 
14.31 
11.20b 

.90 
1.20 
2 5  

.16 
76.3Zb 
14.1Bb 
3.92" 
4.70" 
2.09 
.08 
.02 

1.85 .05 .31 .02 4.38" 2.06 

.67 .76 .50 
.18 .33 6.41" 2.76 3.30 14.15b 
.72 .68 .96 

2.05 1.49 .05 23 .91 .42 
120.9gb 22.77b 257.80b 136.61 56.07b 32.52" 
70.26b 3.00 8.93b 20.21b 14.7Zb 13.4Eb 

.03 .87 4.01" .66 1.04 1.56 

.56 2 9  1.25 .47 1.33 1.51 
3.01 2.24 7.44" 5.07" .OO .30 

.oo .10 .oo 1.53 1.54 1.59 

.58 .81 .45 .17 19.37b 15.31b 

.05 1.18 .46 2.70 1.90 10.6Zb 

.63 .22 .71 .60 .45 .40 

'Indicates Significance at the 0.05 level. 
Indicates significance at the 0.01 level. 

spective criteria, the residual effects of the original design 
factors eigenvalue structure, collinearity, and multicol- 
linearity, usually become insignificant. In  most cases, 
noncentrality level also disappears as a significant factor, 
although it has a sizeable effect on log SEB for the STEINAI 

and FREGF methods. The effects of beta structure are 
highly significant only for FREGF and OFSL, which select 
variables corresponding to significant beta values. 

5. CONCLUDING REMARKS 

We have illustrated the large improvements in SEB 

and SPE which are theoretically known to be possible 
through the substitution of either smooth or discon- 
tinuous pull-back procedurcs for ordinary least squares. 
The potential relative gains in accuracy for individual 
estimated regression coefficients are seen to be typically 
much larger than those for predicted Y values. The 
expected gains in SEB and SPE are fairly small for STEINM, 
while for RIDGM and PRIF they are larger and exhibit 
dependencies on design variables similar to those of the 
artificial method OPT, i.e., dependencies mainly on eigen- 
values and noncentrality factors. Methods such as OFSL 

or FREGF, which select variables, are highly dependent 
additionally on the pattern of true regression coefficients. 
The relatively conservative STEINM procedure has one 
advantage, in that it less often does worse than OREG. 

The relative accuracy of traditional selection of variables 
methods based on significance testing behaves erratically 
in relation to significance levels adopted. While these 
results could have been predicted in a general way from 

either Bayesian or frequentist theoretical considerations, 
we believe numerical depictions make the results both 
concrete and vivid. 

We would like to see the methodology of the study 
moved closer to helping the statistician with a specific 
body of data under analysis. For example, as remarked 
in Section 1, we could perform similar studies with the 
design matrix X fixed at the values of a particular data set. 
Another device would be to apply regression methods to 
n - 1 ro\w o f  (Y, X) and to evaluate predictions for the 
complementary row, and repeat with different selection 
of rows, much in the spirit of jackknifing. 

Yet another, and more Bayesian way, would be to ask 
the statistician to specify 5 or 10 prior distributions 
covering a plausible range, and then to compare the 
closeness of various alternative regression procedures to 
the 5 or 10 posterior means. The Bayesian view offers 
some clarification of the real problem posed by a given 
set of data: if the correct analysis depends critically on 
the model and prior adopted, over some reasonable range, 
then the statistician should not expect any favorite pro- 
cedure taken from his kit of tools to be automatically 
applicable. Our study suggests that conflicts will often 
appear among REGF, RIDGE, and STEIN estimates which 
should cause statisticians to  reexamine both their data 
and their prior understanding for clues. 

APPENDIX A 
The normal linear model is written in the form 

Y = X g + e  (A. 1) 
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where Y is an n X 1 vector of values on the response or dependent 
variable, X is an n X p matrix giving corresponding values on p 
independent variables, and e is an n X 1 vector of independent 
N (0, uz) disturbances. The least-squares estimator b of p is expressible 
in terms of Y and X according to 

b = (XTX)-l(XTY) , (A.2) 

, (A.3) 

which together with the residual mean square 

S' = (Y - Xb)T(Y - Xb)/(n - p )  , 
defines sufficient statistics for the parameters p and uz of (A.1). We 
can summarize the sampling distribution aspects of the model by 
asserting that b and (n - p ) s 2  are independently distributed as 
N ( p ,  u'(XTX)-l) and uz~4-p2,  given fixed nonsingular XTX. 

The RIDQE and PRI methods are closely related to a principal 
components analysis of the p independent variables. Accordingly, it 
is convenient to have notation for replacing the given independeqt 
variables X by p linear combinations 

x *  = XCT (A.4) 

where C is chosen such that 

X*TX* = C(XTX)CT = diag (XI, Xz, . . ., h p )  (A.5) 

CCT = I .  (A.6) 
and 

The model (A.l) is correspondingly reexpressed as 

where 
Y = X*a + e 

a = C @ .  

The least-squares estimates 
a = Cb 

of (Y have a simple sampling distribution. Specifically, the com- 
ponents ai are independently distributed with N (at, uz/Xi) distri- 
bution for i = 1, 2, . . ., p .  

The principal components transformation C is not invariant in 
general under linear transformations of the p independent variables, 
and in particular is not invariant under linear changes of scale in 
each variable separately. In our work we have rescaled the variables 
so that the diagonal elements of XTX are all unity, so that our 
principal components are, apart from a single scale factor, the 
principal components of the correlation matrix among the inde- 
pendent variables. This convention is an essential part of the def- 
inition of the RIDQE and PRI methods which we study. 

Two criteria are used throughout our study to measure the devi- 
ation of an estimated vector $ from its true value p, namely 

SEB = (8 - p)'@ - p ) / d  (A.lO) 

SPE = (B - D)TxTx(B - B ) / U z .  (A.ll) 

SEB abbreviates sum of errors of betas, while SPE abbreviates sum 
of prediction errors. The connection between SPE and prediction 
follows. Suppose that a new set of responses Y* is drawn from the 
linear model Y* = Xp + e* using the same design matrix X appear- 
ing in the original data set which yielded B, and using the same @, 
but using new e* independent of the original e. If X i  is used to predict 
Y*, then the sum of squares of prediction errors averaged over e* for 
fixed 6 is uz + uz SPE. 

The formulas expressing SEB and SPE in terms of principal com- 
ponents are 

and 

P 
SEB = (a; - ui)'/u' (A.12) 

i-1 

and 
P 

SPE = hi(& - a i ) l / U *  . (A.13) 
i -1 

APPENDIX B 
Further details of the REGF methods are sketched here, In par- 

ticular, we derive the posterior weights w ( I )  used in (Zll), and we 
define the stopping criteria F1 and Fz. The notation established in 
Section 2.4 represents by I a subset of T of the p independent vari- 
ables, and by g, the class of all such subsets. Given that only the 
components @ ( I )  of p are nonzero, (A.l) can be written in the form 

Y = X(I)p(I)  + e (B.1) 

where X ( I )  and p ( I )  denote the parts of X and p corresponding to 
1. The obvious generalizations of (A.2) and (A.3) define b(1)  and 
S (I)*.  

For a given value of r, the REQF procedures assume that the (r) 
members of g, are a pri07i equally likely candidates to specify the T 

nonzero components of p. Given any particular I E gr, it  remains to 
specify a prior density for p(Z) and u2. The REQF and DRQF sub- 
families are specified by flat prior density elements of the form 
K ( I ) @  ( I )  where 

K ( I )  = 1 and K ( I )  = [det (X(Z)TX(I))]+, (B.2) 

respectively. The alternative forms of K ( I )  arise from considering 
p ( I )  to have a multivariate normal distribution with alternative 
covariance matrices CI and C(X(Z)TX(I))-l, respectively, and then 
letting C --t m . We also use the common form of flat gamma prior 
density for h = l/uz, namely density element where a = 0, 
1, 2 are typical choices. Thus the joint prior density element for I ,  
@ ( I )  and h is 

[ K ( I ) d @ ( I ) ]  x [hal'-'dhl , 03.3) 

where a remains to be chosen. 

The likelihood of I ,  p(Z), and h from (B.l) is proportional to 

hnI2 exp ( -  (h/2) (&I + &z)) 
&I = (b(Z) - p(I))TX(I)TX(Z)(b(I) - @ ( I ) )  

(B.4) 

(B.5) 
where 

and 
&2 = (n - r )s (Z)2  . (B.6) 

Multiplying (B.3) and (B.4) and integrating out @ ( I )  and h, we find 
that the posterior probabilities are proportional to 

u*(I)  = K(I)[det(X(I)TX(I))]*~(I)('-5-")'z (B.7) 

whence the actual posterior weights used in (2.11) are 

U ( I )  = U*(Z)/ c W * ( J )  . (B.8) 
JE $ 7  

T h e  choices 
(B.9) a = r  and a = r - 1  

were associated with the choices (B.2) for K ( I )  to define REGF and 
DRQF, respectively. 

The selection criterion F1 used by FREQF, FDRQF, lFREGF, and 
iFDRoF is an analog of a 2 log-likelihood ratio statistic. Specifi- 
cally, the statistic used to judge whether r should be increased from 
r t o r + l i s  

FI = Lr+1 - Lr (B.lO) 
where 

L, = - c w ( l )  log ((n - r )s ( I )2 )  . (B.ll) 
'E # r  

We treated Ft as nominally an F on (1, m) degrees of freedom. 
The F2 criterion used by OREQF, ODRQF, IREQF, and IDRQF is a180 

defined by posterior averaging. Specifically, 

(B.12) 

where F Z Q  is defined by appIying (2.11) to the fitted subset I .  
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APPENDIX C 
The devices used for introducing prespecified collinearity and 

multicollinearity into a given correlation matrix R consist of repeated 
applications of transformations of the type 

R + CRCT (C.1) 

where C is square and nonsingular. C may be naturally interpreted 
as a mapping from one basis of the linear space of six independent 
variables to another basis, where R and CRCT are the initial and 
final covariance matrices. For example, in Experiment 1, to introduce 
.99 into the (1, 2) position of R we first used a C which replaced the 
standardized variables by their sum and difference, so that (C.l)  
took the form :::I + [ 0 1 - r12 :::I . (c .2)  

We then rescaled the new variables by [1.99/(1 + rln)]* and 
[.Ol/(l - ~IZ)]+ so that the right side of (C.2) achieved a similar 
form with rlp replaced by .99. Finally, we reversed the transformation 
used in (C.2) to get the desired result. In Experiment 2, the first 
step (C.2) was the same. We then rescaled the difference variable 
to have unit variance, and in order to introduce a correlation .92 
between this variable and the third variable we applied the same 
technique as in Experiment 1. Finally, we unstandardired the 
difference variable to get back the form on the right side of (C.2) 
and we repeated the technique of Experiment 1 to introduce corre- 
lation -95 between the first two variables. 

[Received M a y  1974. Revised September 1976.1 
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APPENDIX C 
The devices used for introducing prespecified collinearity and 

multicollinearity into a given correlation matrix R consist of repeated 
applications of transformations of the type 

R + CRCT (C.1) 

where C is square and nonsingular. C may be naturally interpreted 
as a mapping from one basis of the linear space of six independent 
variables to another basis, where R and CRCT are the initial and 
final covariance matrices. For example, in Experiment 1, to introduce 
.99 into the (1, 2) position of R we first used a C which replaced the 
standardized variables by their sum and difference, so that (C.l)  
took the form :::I + [ 0 1 - r12 :::I . (c .2)  

We then rescaled the new variables by [1.99/(1 + rln)]* and 
[.Ol/(l - ~IZ)]+ so that the right side of (C.2) achieved a similar 
form with rlp replaced by .99. Finally, we reversed the transformation 
used in (C.2) to get the desired result. In Experiment 2, the first 
step (C.2) was the same. We then rescaled the difference variable 
to have unit variance, and in order to introduce a correlation .92 
between this variable and the third variable we applied the same 
technique as in Experiment 1. Finally, we unstandardired the 
difference variable to get back the form on the right side of (C.2) 
and we repeated the technique of Experiment 1 to introduce corre- 
lation -95 between the first two variables. 

[Received M a y  1974. Revised September 1976.1 
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I n  these comments, we shall be concerned with just 
two variants of ordinary regression, RIDGE and STEIN. 

Our interest is focused in this way because we have given 
considerable thought to  estimators of these types in our 
own research over recent years on empirical Bayes and 
Stein-type estimation, because more analytical power can 
be brought to  bear on these methods than suggested in 
the paper, and because for the loss functions used, the 
performance of these estimators depends on the experi- 
mental inputs only through the eigenvalues of the matrix 
X ’ X .  This last reason simplifies matters greatly for 
understanding RIDGE and STEIN, although it does not 
apply to most of the other 57 varieties. For lack of space, 
and because we haven’t studied them carefully, we will 
not discuss the confidence contour constraint variants 
of Section 2.4.5 of RIDGE and STEIN. 

This leaves STEINM, RIDGM, and SRIDG as the only three 
rules under consideration. When the eigenvalues { A , )  of 
x‘x are equal, STEINJI and RIDGhI reduce to  the same 
rule, but SRIDG behaves very badly, being highly non- 
minimax. By making use of arguments in [3], it easily 
can be shown to  bc substantially and uniformly improved 
upon by the James-Stein rule. We also expect SRIDG to 
perform poorly when the cigcnvalues are unequal, which 
happened in the simulation. Since SRIDG is so complicated 
in general, and has not been recornmended elsewhere, we 
shall take RIDGAI to  be the only interesting vcrsion of 
RIDGE considered in the study. 

Certainly the most dramatic conclusion of the study is 
that a version of the ridge method, in the form of RIDGJI, 

is the best method used in the study and dominates a 
Stein-type method, in the form of sTEINnr. While we 
agree with this conclusion, and have made similar state- 
ments in our own work [2, 31, we believe different 
language should be used; language based on an under- 
standing of why this is so. In  particular, we see justifi- 
cation for R I D G ~ I  arising out of the empirical Bayes 
literature in combination with the implicit assumptions 
of this experiment, and not from the ridge-trace graphical 
technique used for estimation of regression coefficients. 

The‘ reader should note that sTEIN,\i is not thc James- 
Stein rule (which we shall term JSTEIN) [4], and over- 
shrinks JSTEIN by a factor of [ (n - p + 2)/ (72 - p)]p/ 
( p  - 2), or 12/7 in this case. This sacrifices about 51 
percent of the improvement in risk of JSTEIN over the 
ordinary regression estimator (OREG) for the loss function 
SPE. We make this statement for the data of these cx- 
periments, knowing that the authors claim the contrary 
a t  the end of Section 2.4.1. The risk function for SPE 

loss is a function only of CEN, the nonccntrality param- 
eter, which takes on the five values CEN = 10, 50, 100, 
200, 500 in this experiment. The approximate value of 
the risk a t  these points (actually an upper bound) is 
5.00, 5.74, 5.87, 5.93, and 5.972 for STEIN while STEINAI 

has 5.51, 5.87, 5.93, 5.97, and 5.986. Ordinary regression 
has SPE risk of G.00 for all values of CEN, and so even 
JSTEIN would not improve least squares substantially in 
these experiments. The Jamcs-Stein estimator should not 

be applied with the loss SEB, and is known not to  be 
minimax in this case. 

But RIDGM also is better than JSTEIN in these experi- 
ments. This is expected for experiments or problems 
where the regression parameters (ai 1 have an exchange- 
able prior distribution. In  the Dempster, Schatzoff , and 
Wermuth experiments, the random rotation matrix G 
tends to  symmetrize the prior distribution, and this fact 
combined with the dispersed set of eigenvalues insures 
that RIDGM will be better. Professor Thisted’s comments 
are much more complete on this issue. 

In  relation to  the preceding paragraph, one of our 
concerns about the widespread application of ridge re- 
gression is that, being a data-based Bayes rule against 
an exchangeable prior, i t  is necessary to feel confident 
in the exchangeability assumption, while in most real 
regression problems the statistician couldn’t be. In  
certain nonregression problems, for instance in the ex- 
amples of [2], exchangeability seems plausible a priori, 
but when this assumption is violated significantly, ridge 
rules can be much worse than the ordinary regression 
rule. That is, ridge rules are not minimax in general. We 
will put these issues in more mathematical form to make 
the argument clearer. 

If we allow ourselves the luxury of thinking of n as 
large (instead of 20) so that u2 may be assumed known 
(this could be relaxed at the price of additional mathe- 
matical complcxity), the Dempstcr, Schatzoff, and 
Wermuth estimation problem may be expressed in 
canonical form as the problem of observing 

Yi  - .v(e,, V,) , i = l (1)p (1.1) 

independently with Vi = u2/Ai and u2 known, Y, = a; 
= (CD),, C being the principal components orthogonal 
transformation defined in Section 2.2. In  this notation 
ei = (CB), is to be cstimated with risk function 

P 

R = E C Li(8i - 0i)’ (1.2) 
i-1 

where Li = 1 for SEB and Li = l/V,.for SPE. 

J,ctting A u2/k ,  the indeperidcnt prior distributions 

0, - X(0 ,  A )  , i = l ( l ) p  , (1.3) 

lead to  the Bayes estimator 

EBi) Y ,  = (1 - B J Y ;  , Bi = Vi / (Vi  + A )  . (1.4) 

We say that (1.4) is an “empirical Bayes estimator’’ if 
A is cstimated from the independent marginal distribu- 
tions (derived by integrating out the distributions of Bi 

in (1.1) with respect to (1.3)) 

Y,2 - ( A  + V,)xi2 , i = l (1)p , (1.5) 

and then the estimate A^ is used in (1.4) in place of the 
unknown value A .  

Defining A; = Y,2 - V,, we have En^, = A ,  so these 
are p independent unbiased statistics which may be used 
to estimate the unknown value A .  Obvious unbiased 
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estimates of A are of the form 

A = ~ A a w i ,  C W , = l .  (1.6) 

The choice W, = W , ( A )  a l/Var (A,) = .5/(V, + A) 
results in the RIDGM estimate if w,(A) is replaced by 
W,@)  in (1.6). The rule we proposed in [Z] for the 
toxoplasmosis data, which we label EBniLE, derives from 
W,(A) 0: 1/(Var (A1))2 = .25/(V, + A)2,  W,(A) re- 
placed by W,(A) in (1.6). This is the optimal linear 
estimator in (1.6), and is equivalent to  the maximum 
likelihood estimator of A from (1.5). Hence the term 
EBMLE signifies the empirical Bayes model with maximum 
likelihood estimation of A .  

Both of the estimators of the preceding paragraph take 
advantage of the exchangeability of (1.3) and therefore 
are superior to  STEINM and JSTEIN for priors of the form 
(1.3). It is essential to  note, however, that if (1.3) were 
replaced by 0, - X ( 0 ,  V , A )  then JSTEIN, which in this 
notation is (1 - (p - 2) /C Y,”/V,)Y,, and STEINM 

would outperform EBMLE and RrDGnr. The experiment 
therefore has proved that the array of experimental re- 
gression coefficients is better represented by Var (0,) = A 
than Var (0,) = V,A.  

Carter and Rolph used their own version of RIDGM 

quite successfully in an empirical Bayes application to 
spatial analysis [ 11. (Actually both the Carter-Rolph 
rule and EBnILE [a]  were modified slightly so that they 
reduce to  the James-Stein rule when the V 8  all are equal.) 
While we don’t know whether EBMLE or RIDGM is better 
for small or moderate p ,  EBMLE must be better for large 
p if (1.3) holds because of its relation to  the maximum 
likelihood estimator. It would be interesting to  compare 
these rules on the 160 data sets of the experiment. 

If the V ,  are sufficiently unequal, then for certain 
configurations of the parameters el, . . ., eP, both EBJILE 

and RIDGM can be much worse than OREG for both losses 
SEB and SPE. (The problem rests precisely with the 
component having the large V ,  or small A,, i.e., the com- 
ponent most ridge papers are concerned about.) JSTEIN, 

of course, is guaranteed to  improve upon OREG for SPE, 

while it is not minimax for SEB. 
It should be clear from the preceding discussion about 

SRIDG, RIDGM, and EBMLE that there are many ways to  
estimate the constant k from the data. Although almost 
every ridge paper published, including this one, has 
presented a different method, the expression “the ridge 
estimator” continues to be used. In  fact, ridge estimators 
are a class of Bayes rules against normal priors indexed 
by k, and the effectiveness of a given rule depends upon 
how k is estimated. Some published ridge estimators are 
drastically different from others, and some are disas- 
trously bad. We believe that the important problem now 
is t o  find estimators of k which have good risk properties 
in the class of all possible estimators. 

Because most applications of Stein’s rule require its 
generalization to  the unequal variances situation, and 

because ridge regression formally reduces to  this situa- 
tion, we have given a great deal of thought to the problem 
framed by (1.1)-(1.5) over the past several years. This 
includes derivation of a wide class of minimax estimators 
which encompasses most estimators already proven to be 
minimax by other writers. We also have considered 
numerous empirical Bayes rules, partly in light of a 
necessary condition for minimaxity. In the equal variance 
situation of James and Stein [4], minimax rules with 
Bayesian properties against exchangeable priors exist, 
but when orthogonal invariance is sacrificed this happy 
result disappears. When the variances Vi are sufficiently 
unequal, our current understanding is as follows. A 
fundamental tension exists between minimax and empiri- 
cal Bayes (or ridge) requirements, and no rules appear to 
exist which are satisfactory from both standpoints. One 
cannot approximate the Bayes rule against the prior 
(1.3) without risk of doing worse than the Gauss-Markov 
estimator. Improvement on the Gauss-Rlarkov estimator 
in regression situations therefore can be guaranteed only 
with external information about the prior distribution of 
the regression coefficients. Unfortunately, such infor- 
mation is not available for many applications. 

To summarize, the statistician has a choice of shrink- 
age rules to consider in applications to  real data, and 
must be careful in exercising this choice because, while 
the rewards can be great, so also can be the penalties. NO 
choice uniformly dominates the Gauss-Markov estimator 
for all loss functions. The statistician, therefore, must 
know enough about his data and about the properties of 
the alternative estimators available to  him to make an  
intelligent choice of rule. For the Dempster, Schatzoff, 
and Wermuth experiments, the exchangeable prior, and 
therefore the use of RIDGM or EBAILE, seems to  be justified 
in aggregate, although the statistician who looks a t  the 
160 individual problems might choose not to  use the same 
rule in all of these situations. Other experiments could 
give opposite conclusions, so the reader’s faith in the 
results of this experiment ultimately depends on how 
much he believes the Dempster, Schatzoff, and Wermuth 
data sets typify real world experience. 
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Comment 
ARTHUR E. HOERL* 

The authors are to be congratulated for so clearly 
presenting such a breadth of material. In  addition, the 
theoretical Bayesian development which lcads to the 
RIDGM algorithm is most ingenious and goes a long way 
in attaining a realistic share of the ridge potential in 
reducing mean square error. 

In  the joint papers [2, 31, where simulation was used 
to  examine ridge algorithms, orthogonal Z matrices of 
various dimensions and conditionings were defined. 
Random vectors a with specified norm (designatcd as 
a2 = a'a) and e were generated, and the resultant least 
squares and ridge regression were characterized through 
a quadratic loss function. In  these simulations our origi- 
nal algorithm relied on the minimum quadratic loss csti- 
mate k ,  = u2/ai2.  This is, as the authors state, an intcrcst- 
ing identity since it depends on a12 (and u2) only arid not 
on its corresponding eigenvalue Xi.  However, one can 
readily satisfy oneself that when using samplc cstimatcs 
the resultant loss is relatively largc. Thcrcfore, this 
motivated us to  use a single k ,  equal to  the harmonic 
mean of the p values kl, . . ., k,, i.e., 

k ,  = ps=/d'd . 
Subsequent to  this simulation publication [2], an 

iterative algorithm with an empirical stopping rule based 
on successive estimates of a'a has been published [a]. 
Since the sample value B'b overestimates a'a, k ,  tends to  
underestimate its goal value. Therefore, since the first 
ridge cut, k,,, results in an improved estimate, &Ro, of a, 
then based on the square length of d R o  would perhaps 
be a better estimate of a. The successive estimates k,; can 
be repeated until the rate of change in k.i has stabilized. 
This can be specified under an  empirical stopping rule. 

For the purposes of multiple comparisons of many 
estimation techniques, the authors were wise in formu- 
lating their comparisons by averaging their results over 
a range of signal-to-noise. However, for the purposes of 
evaluating a few algorithms it is perhaps more illustrative 
to  display the relative effectiveness of each at specific 
values of signal-to-noise since it is not exclusively the 
frequentists who would argue that in formulating a 
simulation strategy the following criterion be used: if it 
can be shown that  one estimator is superior to another 
for all specified values of a'a over a wide spectrum of 
conditioning and a range of p ,  then regardless of the real 
world frequency distribution of a'a (assuming a finite 
domain), that estimator is preferable to  the other. If 

*Arthur E. Howl ia Profemor, Department of Statistics and Computer Science, 
University of Delaware, Newark, DE 19711. 

the two estimators vacillate in superiority as a function 
of a'a, some subjective judgment would then be required. 
As an example of this approach, the following is presented. 

Using the Gorman-Toman data [l] with two spec- 
trums of eigenvalue structure used in [2, 31, a series of 
200 simulations was performcd for each a'a value. The 
uniform random number generator described in the 
Appendix served as the basis for the simulation. Unit 
normals were gcnerated by summing 12 random uniforms 
on (- 5, .5). Least-squares estimates d; were generated 
by di = ai + Ei with Ei dcfincd by the sum of 12 
uniforms dividcd by dAi. Sample values s2, of u2 = 1, 
were defined by the sum of 25 squared unit normals 
divided by the df 25. 

For the 10-factor basic (the same eigenvalue structure 
as originally published) the results in Section a of the 
table were obtained. As a guide, the expectation for the 
F ratio is included. The critical value of F(10, 25) with 
a = .05 is 2.24. For Section a, the expectation for the 
least-squares error is 32.58 and the maximum potential 
is defined to be the minimum possible square error for 

Average Square Error 

Maxi- 
Ordi- Itera- mum 
nary Basic tive poten- 

a'a E(F Ratio) L.S. k .  k,i RlDGM tial 

1 
5 
10 
15 
25 
50 
100 
200 
500 
1000 
2500 
10000 
100000 

1 
5 
10 
15 
25 
50 
100 
200 
500 
1000 
2500 
10000 
100000 

1.20 
1.63 
2.17 
2.72 
3.80 
6.52 
12.0 
22.8 
55.4 
110. 
273. 
1088. 
10871. 

1.20 
1.63 
2.17 
2.72 
3.80 
6.52 
12.0 
22.8 
55.4 
110. 
273. 
1088. 
10871. 

a. 10-Factor Basic 

34.12 7.99 6.80 

30.03 9.66 9.89 
31.55 11.06 11.15 
30.70 12.75 12.81 
34.28 18.23 18.23 
31.84 20.76 20.76 
30.12 24.69 24.69 
32.99 30.33 , 30.33 
30.08 30.41 30.41 
32.09 30.64 30.64 
32.77 32.73 32.73 
35.44 35.38 35.38 

31.85 . 8.83 8.57 

b. 10-Factor Wide 

530 50.1 .99 
584 64.4 4.93 
602 55.3 9.64 
544 54.9 14.1 
589 57.7 21.4 
559 62.8 26.2 
572 71.6 32.0 
61 5 97.5 49.8 
561 120. 88.7 
568 160. 133. 
555 253. 240. 
597 448. 448. 
565 546. 546. 

2.18 
5.1 5 
7.53 
9.10 
12.05 
17.83 
20.56 
24.92 
30.45 
30.51 
30.64 
32.73 
35.38 

2.92 
6.71 
7.68 
10.1 
12.9 
22.1 
31.6 
54.0 
89.4 
138. 
243. 
449. 
545. 

.88 
3.47 
5.52 
7.01 
9.51 
13.82 
16.53 
19.55 
23.84 
24.67 
23.99 
27.78 
28.29 

.87 
3.52 
5.87 
7.88 
10.7 
17.6 
27.5 
43.2 
62.2 
85.3 
138. 
21 8. 
282. 
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each data set using a single k. This is defined by 

MaxPot  = Min { ‘C [ - xi Bi - . 
k > O  x i +  k 

Similarily, for the second simulation, with an assumed 
eigenstructure (4.25, 1.50, 1.25, 1.00, .778, .6, .4, .2, .02, 
.002), the 200 trial averages are given in Section b of the 
table. Here, the expectation for the least-squares error 
is 563.15. 

These results suggest, then, the resultant effectiveness 
similarity between the author’s RIDGM and the current 
iterative algorithm. This prompts a need for a broad 
comparison, over a significant range of p and con- 
ditioning, of these ridge algorithms together with other 
ridge algorithms which are currently under study. This 
suggested study would also need to be concerned with 
the broader aspects of estimation including weighting 
and prediction. Means for disseminating this information 
at an  early date would help to  reduce unnecessary dupli- 
cation and computational effort. Perhaps even a group 
of interested participants could pool their resources and 
talents in defining, formulating, and carrying out the 
detailed simulations. 

With the increasing reliance on simulation in regression 
i t  would seem propitious to  develop a standardized 
procedure that  would be reasonably acceptable. Here i t  
is suggested that sampling conditioned on an CY norm is 
one approach. This has the major attribute of avoiding 
the question of what constitutes a typical regression 
problem. 

Dempster, Schatzoff , and Wermuth suggest that  
another device to  evaluate prediction might be a jaclr- 
knifing type of technique. This has been extensively 
investigated by Hoed and Hennard and found deficient. 
In  fact, the basic idea was extended to  include what we 
called duplex (splitting the data into two groups under 
a variety of criteria) and multiplex (defining all possible 
subsets (3 and selecting all or some fractionated pro- 
portion of all nondegenerate sets). In  every instance over 

a variety of simulations, the technique was found 
wanting. 

APPENDIX: UNIFORM RANDOM NUMBER O N  [-.5, .51 
Define an arbitrary irrational number A truncated to 12 significant 

digits with a normalized floating-point as 

A = ( O . Z Z Z - - ~ ) ~ O ~  . 
The generation of the.uniform random numbers was obtained by 
the followina stem. 

1. 

2. 

3. 
4. 
5. 

I -  

Form the normalized floating-point number 

B = 1/A = ( 0 . ~ ~ ~ - - * ) 1 0 *  

with the remainder 

R = (0.222- - -2) 10‘ 

where r 5 b - 12 and A x B + REMAINDER = 1 with a 24 
digit product A X B. The mantissas of the respective 
numbers R and A satisfy the condition 

0 < MANT (R)  < MANT (A) . 
The assumption here is that the mantissa of the remainder R 
after 12 significant places is independent of the divisor. 
Form C = RIA as (0.zzz- - -2 ) lOc .  Set c to zero and store 
as. the new A. 
The new C is assumed uniform on C.1, 1.1. 
Subtract 0.1 from C and divide by 0.9 for [0, I]. 
Uniform numbers on [ - .5, .5] can be defined by subtracting 
0.5 from C/O.9. 

No more than 100,000 consecutive numben should be used with 
the same original seed to be well assured of a nonrepeated chain. 
An unlimited run (with no repeating chain) can be achieved by 
adding one to A on a fixed count of say every 50,000 numbers. 

In  no instance has the algorithm degenerated in over lo8 wea. 

REFERENCES 

[l] Gorman, John W., and Toman, R.J., “Selection of Variables 
for Fitting Equations to  Data,” Technometrics, 8 (1966), 27-51. 

[2] Hoerl, Arthur E., Kennard, Robert W., and Baldwin, Kent F., 
“Ridge Regression : Some Simulations,” CommunicutimLs in 
Statistics, 4 (1975), 105-23. 

c31 - , and Kennard, Robert W., “Ridge Regression: Iterative 
Estimation of the Biasing Parameter,” Communicutim in 
Stat&ics, A5 (1976), 77-88. 

Comment 
DAVID M. ALLEN* 

To establish some points for reference, I will begin by 
expressing some of my own thoughts regarding regression. 
We have a random vector y and a full-rank, nonstochastic 
matrix X .  The matrix X is said to be ill-conditioned if 
there exists a t  least one vector G such that  IIC(l = 1 and 
llXCll is “small.” We denote E ( y )  by p, and we suppose 

*David M. Allen is Associate Profemor, Department of Statistics, University 
of Kentucky, Lexington, KY 40506. 

there exists a vector @ such that p = X @ .  I will make 
some harsh statements about 0 and then illustrate them 
using a simple example. The example depends on 
X = (x~IxZIX~), X* = (x11xzIx3*), and p where the 
vectors are given in the table. 

What is the interpretation of. @ ?  Let pi and x i j  denote 
the i th  elements of p and xi. Since p; = Cj z;#j for all i, 
it is often appealing to  suppress the subscript i and regard 
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Vectors Used in Examples 

87.36 
-43.17 
-51.68 
-54.32 
-28.74 
-51.14 
50.31 

-42.19 
-8.34 
18.78 

-27.52 
-7.18 
18.08 
50.57 
89.18 

-87.36 
-47.97 
-26.72 
- .56 

-59.46 

- 12.09 
25.66 

47.09 
-56.34 
34.14 
58.88 
56.18 

-33.76 
13.13 
89.18 

-.07 
-65.08 
-55.99 
-39.20 
-62.97 
-18.21 
27.24 
3.48 

-46.16 
37.75 
22.37 
34.96 

-11.15 
45.56 
127.47 

.07 
-65.12 
-56.01 
-39.20 
-63.03 
-18.19 
27.36 
3.52 

-46.24 
37.85 
22.43 
35.04 

-1 1.25 
45.44 
127.33 

-84. 
-69. 
-68. 
-56. 
-54. 
-38. 
-33. 
-19. 
-18. 
-6. 
-4. 
2. 
44. 
137. 
266. 

/r as a linear function of continuous variables xl, x2, and 
xa. A common interpretation is: @ j  is the change in p 

accompanying a unit change in xj with all other x's 
constant. The problem with this interpretation is that  an 
ill-conditioned X precludes all other x's constant. For the 
X of the example the relationship 

I .5Xi + .5Xz - .7X3 I < .05 (1) 

is always satisfied. This requires x2 or x3 to change if x1 
changes as much as .2. If x1 increases by'one and the 
sum of absolute changes in 22 and 2 3  is kept as small as 
possible subject to (l) ,  then x2 does not change and x3 
increases by .5714. Thus the change in /r accompanying 
a unit change in x1 with minimum changes in x2 and 2 3  

is ol + .571483 and not pl. If X is ill-conditioned then, 
@ has little or no interpretation. 

The vector v is unique. Its elements are expected 
values of observable random variables and are inter- 

, pretable. If X has not been correctly specified (Who 
really knows X?), then there may not exist a @ such 
that  v = X@. If X is correctly specified but ill-condi- 
tioned, then @ is fickle with regard to  small perturbations 
of the elements of X .  In  the example, both X and X* 
are correct specifications in that their columns span the 
same vector space and v is in that space. The maximum 
absolute difference between corresponding elements of X 
and X* is .14, yet @ = (-41950/49, -41950/49, 1200)' 
and @* = (42050/49, 42050/49, - 1200)' are drastically 
different. 

The estimation of a linear combination of the elements 
of @ where the variance of the least-squares estimator is 
greater than u2 will be termed an extrapolation. That  is, 
the precision of the estimator is less than the precision 
of a direct observation on that  linear combination (if 
such observation were possible). If X is ill-conditioned, 
then estimation of an individual element of @ is often 
an extreme form of extrapolation. For the X of our 
example the respective variances of estimators of ol, Pl,  
and f 1 3  are 1 8 . 2 2 ~ ~ ~  1 8 . 2 2 ~ ~ ~  and 35.716~9. 

Because of the high dimensionality of typical regression 
problems it is impossible to  conduct a comprehensive 
simulation study. However, the authors have come closer 
than any other study I have seen. I believe interpretation 
of regression is most difficult when X is highly ill-condi- 
tioned and thus regard Experiment 1 as being more 
valuable than Experiment 2. In  view of my harsh state- 
ments about @, I would rather have a (A.8) than @ as a 
factor in the study design. This would systematically 
generate different p in the appropriate vector space. For 
similar reasons, I place more credence on the analysis 
by SPE (A. l l )  than on the analysis by SEB (A.lO). I am 
impressed by the potential of REGF methods and look 
forward to studying them further. 

The authors mention conflicts among different methods. 
If we do not extrapolate, these apparent conflicts may 
be of less consequence than they indicate. Evaluation of 
SPE cannot involve extrapolation, while evaluation of SEB 

often is extrapolation. This statement is supported by 
the fact that the coefficient variation of SPE is less than 
the coefficient of variation of SEB. 

The authors caution against expecting any favorite 
procedure to be automatically applicable. I emphatically 
agree. In  my example, the variance of the least-squares 
estimator of (-51.14, 25.66, - 18.21)@ is .097554a2, 
which is quite good for 15 observations. However, for 
(-50.74, 26.06, -18.77)@ the variance is 46.62~9. Except 
for unrealistically large values of uZ, ridge is worse than 
least squares in mean square error for both cases. We 
should recognize the existence of situations where no 
estimation, by any method, is warranted. The second 
linear combination just mentioned is such a case. The 
data simply does not contain much information about 
that  linear combination. 

Comment 
A. F. M. SMITH" 

Interest in alternatives to  ordinary least-squares pro- 
cedures for the analysis of the normal linear model is now 

University College London, Gower Street, London WClE BBT, England. 

widespread among both Bayesian and frequentist stat- 
isticians, and the authors are to  be congratulated on their 
timely and stimulating contribution. 

I shall confine my comments to  just two aspects of this 
*A.F.M. Smith is Lecturer. Department of Statistics and Computer Science, 
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wide-ranging study : the first concerns the relationship 
between continuous and discrete shrinking methods ; the 
second relates to  the authors’ formulation of the pre- 
diction problem. 

A link between continuous and discrete shrinking 
methods is implicit in a result established by Leamer 
and Chamberlain [4, Theorem 11, which shows that the 
RIDGE estimator-given here by (2.1) with Q equal to  
the identity matrix-can be written as a weighted- 
average of the 2 p  least-squares estimators corresponding 
to  all possible ways of constraining subsets of the p 
regression coefficients to  be zero. The weighted-average 
forms REQF and DRGF are not quite of this form, since 
only (r) such least-squares estimators are combipned (for 
some chosen r ) ,  but it would, perhaps, be worthwhile 
exploring the connection further. In  particular, an 
examination of the weights given by Leamer and Cham- 
berlain [4, Eq. (4)] and those discussed in Appendix B 
of this paper reveals great similarity, especially for DRGF. 

Indeed, apart from the fact that Leamer and Chamberlain 
assume the variance u2 to  be known, it appears that DRGF 

could be derived by expressing RIDGE as a wighted- 
average and then forming a renormed weighted-average 
using only those terms corresponding to  T nonzero- 
constrained components (see [4, Eq. (3) and (4)] and 
Appendix B, (B.2), (B.7), (B.8), (B.9) with a = r ) .  A 
closer study of this connection might well give some 
insight into the comparative performances of these 
estimators. (A similar analysis could be made of the 
relationship between PRI and an alternative weighted- 
average representation of RIDGE given in [4, Theorem 21.) 

I find the comparison of estimators using prediction 
mean square error rather difficult to  interpret. Indeed, 
it seems to  me that this part of the study is both mis- 
leading and misguided in so far as it identifies the pre- 
diction problem with that of predicting a set of future 
values at precisely the same design points as have been 
used in estimating the regression coefficients. This 
obscures many of the features of interest that are present 
in the more general prediction problem and leads the 
authors to  conclude that there is less scope for improve- 

ment over least squares in the prediction context. Brown 
[I] has shown that this is not necessarily true, and his 
arguments have been extended to  a more general shrink- 
age estimation setting by Goldstein [3]. 

The point a t  issue can be summarized as follows. Let 
us assume that b* is an estimator of p from (A.l), and 
that we wish to  predict m future values of Y correspond- 
ing to  a design matrix X,(m X p ) ,  the latter scaled in 
such a way that X,b* is the desired predictor. (Note that  
the authors consider only the special case m = n, 
X, = X.) It can be shown that if b* is taken t o  be the 
RIDGE estimator, then the derivative, with respect to  k, 
of the predictive mean square error, evaluated at k = 0, 
is equal to - 2 2  Ca (B,,/hJ, where Baa = ( C X o T X o C T ) ; ; ,  
and C and hi are defined by (A.5). In  this more general 
setting, it is the relationship between the Bii and the 
h ,  which determines the scope for saving in predictive 
mean square error. The case considered by the authors 
has the special form B;i = h, and gives no insight into 
the greater scope for improvement which occurs when 
the larger values of B;; correspond to  small values of 
A;; i t . ,  when the directions in which predictions are 
required turn out to  be those which are poorly estimated 
on the basis of the original design matrix. 

Finally, I should like to draw attention to  a splendid 
example of RIDGE in action-that of “Election Night 
Forecasting” in the U.K. [2]-where a version of RIDGE 

triumphs over all-comers, including OREG (k = 0) and 
ZERO (k = m). 

REFERENCES 
[l] Brown, P.J., “Predicting by Ridge Regression,” unpublished 

report, Department of Mathematics, Imperial College, London 
1974. 

P I  - , and Payne, C.D., “Election Night Forecasting (with 
discussion),” Journal of the Royal Statist id Society, Ser. A ,  138, 
1975, 463-98. 

[3] Goldstein, M., “Aspects of Linear Statistical Inference,” un- 
published Ph.D. thesis, Mathematical Institute, University of 
Oxford, 1974. 

[4] Leamer, E.E., and Chamberlain, G., “A Bayesian Interpretation 
of Pretesting,” Journal of the Royal Statistical Society, Set. B, 
38, 85-94. 

Comment 
CHRISTOPHER BINGHAM and KINLEY LARNTZ* 

The methods of estimation compared in the paper fall 
into two classes: those which are best understood in 

* Christopher Bingham is Associate Profasor and Kinley Larnts is Assistant 
Profeasor, both at Department of Applied Statistics, University of Minnesota. 
St. Paul, MN 55108. The research of the second author was facilitated by a single 

terms of the coordinates defined by the given independent 
variables, and those which are best understood in terms 
Of canonical variables defined by eigenvectors of the 

variables. What seems to be important in both these 
cross product or correlation matrix of the independent 

quarter leave granted by the Regents of the Univeraity of Minneaota. 
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cases is the Orientation of the true coefficient vector 
relative to  the relevant coordinate system. 

In  the case of best-subset methods or Bayesian mix- 
tures of them, it seems to us that the relevant coordinates 
are in terms of the orthogonal basis in variable space 
defined by the independent variables as given, either 
standardized or not. The coefficient /3j can be considered 
the length of the projection of @ on the j t h  basis vector. 
Coefficient vectors oriented near the space spanned by a 
small set of the basis vectors will be well approximated 
by subset regression models, and methods assuming that 
they are so oriented should be an improvement over 
methods, such as least squares, that do not. I n  effect, 
subset methods shrink the coefficient vector in the direc- 
tion of planes determined by a subset of the basis vectors. 
If that is appropriate, they do well. 

The other class of estimators, ridge methods and their 
generalizations, can be defined as 

B = (X’X + Q)-’X’Y 

where Q is a positive-semi-definite matrix, or as a limit 
of such estimators. The independent variables matrix X 
is almost always assumed to be corrected for the mean, 
and is usually assumed to be standardized so that X’X 
is a correlation matrix. The properties of such an esti- 
mator are best understood in terms of the relative 
eigenvectors of X’X and Q. It is well known that X’X 
and Q can be simultaneously diagonalized. That is, there 
is a nonsingular matrix A such that 

A’X’XA = A = diag [XI, Xz, . . ., A,] 
and 

A’QA = K = diag [kl ,  kz, . . ., k,] . 
The rows of A-I are proportional to the eigenvectors 
of X’X relative to Q. For ordinary ridge regression, 
Q = K = kI, and A is orthogonal. For generalized ridge 
regression, A is orthogonal and Q is the matrix having 
the same eigenvectors as X’X and eigenvalues k1, . . . , k,. 
For Marquardt’s generalized inverse, Q can be taken 
as a limit of matrices of this form, with the k i  correspond- 
ing to the smallest eigenvalues Xj of X’X approaching 
infinity and those corresponding to  larger eigenvalues 
being zero. 

This diagonalization induces transformations of the 
parameters and independent variables : 

and 

We can express the estimator 6 as 

@-+A- l@ = a or = Aa , 

X + X =  XA . 

6 = [ (A’)-lAA-l + (A’)-lKA--l]-lX’Y 
= A ( A  + K)-lA’X’Y = A(A + K ) - l P Y  
= A 8  , where 8 = A-lB = (A + K)-IX’Y . 

Thus @ and 6 can be expressed in terms of a and 8, which 
represent the coordinates relative to the rows of A-I (the 
columns of A, if A is orthogonal). These characterize the 
orientation of p and Q relative to  these eigenvectors. 

From the point of view of the paper, as wyell as of many 
other authors, the relcvant property of an estimator is a 
generalized mean square error criterion 

7 2  = E [ ( B  - @>’w(B - @)I = EL(& - a)lW(a - a)] , 
where W = W‘ and W = AWA’. I n  the usual cases 
fi = diag [wl, w 2 ,  . . ., w,], i.e., W is also diagonalized 
by A. Both SEB (W = I = W) and SPE (W = X’X, 
W = A) are of this form. Then 

7 2  = t r  (W Cov [a]) + t r  W ( E [ &  - a]E[& - a]’) . 
But Cov [a] = cz(A + K)-IA(A + K)-l and 

EL& - a] = ((A + K)-’A - 1). = - (A 4- K)-lKa . 
Thus 

7’ = u2 C [WiXi/(Xi  + ki)’] + [w,a,2ki2/(Xi + ki)’] . 
It is easy to  check that r2 is minimized for any choice 
of w, > 0 [l] by ki = u2/a,2, in accordance with Hoed 
and Kennard’s result for W = I [S]. The minimized 
value, which in some sense represents the best that one 
could do using any estimator in this class of estimators, is 

Tmin2 = C Wi(UZXi’+ .“/..t”)/(Xi + rP/a?)Z 
= c WiCr,2/(1 + X,a?/crZ) 

TLS2 = c W,UZ/Xi . 

. 
For least squares, (K = 0 ) ,  we have 

Thus in each canonical direction the amount of pos- 
sible improvement over least squares is (Xia,l/a2)/ 
(1 + X,a?/d‘). For fixed ai /u  the improvement is greatest 
for smallest X i .  This provides much of the motivation 
for Marquardt’s generalized inverse estimator. However, 
for fixed X i ,  no matter how small, this ratio can be made 
as close to one as desired if the corresponding canonical 
coefficient a, is large enough. In  summary, we may con- 
clude that the closer the coefficient vector is to the space 
spanned by the eigenvectors corresponding to the larger 
eigenvalues Xi, the more improvement ought to be pos- 
sible over least squares. 

The above considerations indicate to us that any ex- 
periment designed to explore the merits of various adap- 
tive ridge estimators, i.e., estimators with K chosen 
depending on the data (usually on BLs/s ) ,  should have, 
as one of the primary factors, variation of @ relative to  
the eigenvectors of X‘X, i.e., variation of a. The second 
important factor is, of course, the pattern of eigenvalues 
of X’X. The direction of the eigenvectors is meaningful 
only with respect to  their relationship with @. This is 
why variation of a should be a factor rather than the 
eigenvectors. 

One difficulty in evaluating the results of the present 
experiment is that the eigenvectors, or more importantly, 
the a’s, are not given. The orientation is left to chance, 
without much indication of how the construction of 
patterned correlation matrices constrains a. Even when 
the eigenvector matrix of the nonstandardized form of 
X’X is chosen randomly (uniformly over the orthogonal 
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A. Orientation of Simulated Alpha’s 

A l .  EIG = 64.0 16.0 4.0 2.0 1.0 0.5 COR= no 
BETA = 32.0 16.0 8.0 8.0 8.0 8.0 MCL =no 

A2. EIG = 64.0 16.0 4.0 2.0 1.0 0.5 COR = n o  
BETA = 1.0 7.0 1.0 0.0 0.0 0.0 MCL =yes 

A3. EIG = 30.0 30.0 30.0 20.0 20.0 20:O COR =yes A4. EIG = 30.0 30.0 30.0 20.0 20.0 20.0 COR =yes 
BETA 1.0 1.0 1.0 1.0 1.0 1.0 MCL =no BETA = 32.0 16.0 8.0 0.0 0.0 0.0 MCL =yes 

NOTE : EIQ denotes eigenvaluea of X’X matrix, and BETA denotaa the “true” regression coefficienb. 

group), the eigenvectors of R, the correlation matrix, are 
not random. Still less random are the eigenvectors of R 
after it is massaged to  have high collinearity and/or 
multicollinearity. To get a clearer picture of what might 
have happened in the experiments described in the 
paper, we conducted a small simulation study to  investi- 
gate the distribution of a, for fixed @, when the eigenvec- 
tors of X’X were chosen randomly and X’X was stand- 
ardized and massaged exactly as described in the paper. 
There is considerable difficulty in presenting the results 

because the orientation of (Y is best expressed as a point 
on the unit sphere in 6-space. One simplification followed 
from the observation that we could always take a as 
being in the orthant defined by aj 2 0, j = 1, . . ., 6. 
To reduce the dimensionality, we looked a t  the orienta- 
tion of a in some of the twenty three-dimensional sub- 
spaces defined by sets of three coordinate axes. An 
effective way of displaying such three-dimensional orien- 
tations is by means of an equiareal plot of a hemisphere 
(in this case, an octant) on a disk (quadrant). Figure A 
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Eigenvalue Patterns for SEB Simulation Study 

Pattern no. 
Eigen va loes 

1 2 3 4 5 6 7 8 9 10 

1 .o 
1 .o 

1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
- 
- 
- 

2.0 
1 .o 

1.23 
1.20 
1.11 
,847 
,827 
.778 
1.59 

30 
no 
no 

5.0 
1 .o 

2.05 
1.20 
,958 
.921 
.790 
.0803 

25.5 

30 
Yes 
no 

10.0 
1 .o 

2.00 
1.15 
1.02 
,962 
,816 
.0484 

41.3 

30 
no 
Yes 

p = 2  - 
25.0 50.0 
1 .o 1 .o 

p = 6  

3.40 4.63 
1.88 ,733 
.436 ,333 
,159 ,164 
,0738 ,0927 
,0502 ,0420 

- 

67.7 110 

64 64 
no Yes 
no no 

100.0 
1 .o 

1.96 
1.22 
1.06 
,936 
.a23 
,0071 6 

274 

30 
Yes 
Yes 

200.0 
1 .o 

1.994 
1.010 
1.005 
,995 
.990 
.00600 

332 
- 
- 
- 

500.0 
1 .o 

3.55 
1.50 
.583 
,228 
,126 
.00733 

484 

64 
no 
Yes 

1000.0 
1 .o 

3.14 
1.66 
,877 
,257 
,061 5 
.000850 

3694 

64 
Yes 
Yes 

shows four typical plots. Each circle is actually four 
plots, one for each of the four three-dimensional subspaces 
containing the eigenvectors al and as corresponding to 
the largest eigenvalue and the smallest eigenvalue of the 
correlation matrix, respectively. Thus, starting at the 
upper right and proceeding clockwise, the four quadrants 
display the orientations of the simulated a's in the spaces 
spanned by all 'az, and ae; all a3, and aa; al, a4, and ae; 
and al, as, and ae, respectively, where the aj's are the 
eigenvectors corresponding to  Xj, the j t h  eigenvalue in 
decreasing order of magnitude. 

Figure A1 corresponds to  a situation in which there is 
no introduced collinearity or multicollinearity. In  this 
case the distribution of the aj's is exchangeable, although 
probably not completely random (isotropic), and hence 
we would not expect to  see any marked pattern. I n  fact 
the display shows a fairly uniform distribution of direc- 

B. Ratio of SEB for Ridge Methods to 
SEB for Least Squares a 

Ratio 

I 
1.0 

.1 

M.---- 

0- ------- 
c - - -. - - - 
L . .- . . - . . - . ._ 

.................. 

.... ."...,,-. ",I .... 

'. 
.001 

1 2 3 4 5 6 7 8 9 10 
Pattern Number 

Ratio 

lo* 

1 .o 

\ '. " 

\ '. 
Y . -  .......... \ .', B -.,-,,, 
c--- .  -.- 
L .._..-. .-..- \ %. 

I I I I I I I I \  

\ 
\ 

.1 
8 9 10 1 2 3 4 5 6 7  

Pattern Number 
82. Canonical Coefficients: a' = (V50, V50) 

Ratio 

' O l  

L .._..-. .-..- I 
.1 I I I I I I 1 I I 
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83. Canonical Coefficients: a' = (0,701 

BI. Canonical Coefficients: (I' = (70.0) a Number of regressors: p - 2. 
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tions. In  the other three cases with either collinearity, 
multicollinearity, or both, the distributions are clearly 
not random. Figures A2 and A4 display a marked 
tendency for a1 to  be large relative to  a6, exactly the 
situation for which we would expect ridge methods to  be 
an improvement over least squares. The degree of con- 
sistency displayed by Figure A4 is, indeed, quite re- 
markable. The "inner" aI.)s are, however, quite random. 
Figure A3 shows a case for which both a1 and a6 tend to  
be bounded away from zero, and to  be rather highly 
correlated. Again the "inner" a,'s are relatively random. 
For emphasis, we would like to repeat that these a ' s  
were chosen as described in the paper, using 100 different 
random sets of eigenvectors. For the data sets discussed 
in the paper corresponding to  Figure A4, for which a's 
are not given, it is clear we can say quite a lot about 
the orientation of a relative to al and ae, even though the 
original eigenvectors were chosen randomly. 

To study the effect of varying the a's more explicitly 
than was done in the paper, we conducted another small 
simulation study. We restricted our investigation to  a 
comparison of least squares with a few ridge-type esti- 
mators. No best-subset methods or their relatives were 
included. The particular procedures selected were (with 
the mnemonics used in our plots) : 

B : RIDQM in the paper, ridge with empirical Bayes k ;  
c: 1 c R I D o  in the paper, ridge with shrinkage to the F = 1 

contour; 
I :  PRIF in the paper, adaptive form of Marquardt's generalized 

inverse [5]; 
L: Ridge regression with k estimated as ~ s ' / ~ L ~ ' ~ L ~  sug- 

gested by Hoerl, Kennard, and Baldwin [4]; 
0: Generalized ridge regression as proposed by Hoerl and 

Kennard [S] with K = diag [h, .... k,] computed using 
a method of Hemmerle [ a ] ;  

C. Ratio of SEB for Ridge Methods to 
SEB for Least Squaresb 

Ratio 

.01 
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- 1  .................. 
om------- 
5 ....""",* "..."*.." 
c-.-. -. - 
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'. '. . '., 

\ 
\ 
\ 
\ 

,001 1 I I I 1 I I I 1 \I 
1 2  3 4 5 6 7 8 9 10 

Pattern Number 

C1. Canonical Coefficients: (I' = (V99, 0.5, 0.5,! 0.5, 0.5, 0) 

Ratio 
10 
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C2. Canonical Coefficients: a' = (3, V2.5, V2.5, V2.5, V2.5, 9 )  

..... . . . .  I a.... 
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Pattern Number 

C2. Canonical Coefficients: a' = (3, V2.5, V2.5, V2.5, V2.5, 9 )  

Ratio 

lo> 

I 

1 .o 

M'---- , .................. 
0 _------ - 
B ...._.............. I 
c -.-. -. - 
L ..-..-. .-..- 

.11 I I I I 1 I 1 1 

1 2 3 4 5 6 7  8 9 10 
Pattern Number 

C3. Canonical Coefficients: a ' =  (0, 0.5, 0.5, 0.5, 0.5, V99) 

b Number of regressors: p = 6. 

M :  OPT in paper, generalized ridge with the correct (unrealiz- 
able) optimal ki's, yields a lower bound for ridge type 
estimators. 

Computations were carried out for p = 2 and p = 6 with 
variety of canonical regression coefficients a and eigen- 
values A. The a's were standardized SO that a'a = 100. 
The variance 2 was assumed to  be 1. For each com- 
bination (a, A), 1000 regressions with n = 20 were 
simulated and the average SEB calculated. The eigenvalue 
patterns for p = 2 and p = 6 are given in the table with 
the patterns ordered by the ratio of the largest eigenvalue 
to  the smallest eigenvalue (i.e., the condition number of 
the correlation matrix). For p = 6, eight of the eigen- 
value combinations correspond to  correlation matrices 
constructed according to  the 2a combinations of the 
factors EIG, COL, and MCL in Experiment 2 of the paper. 
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Different randomly chosen rotations were used in con- 
structing each of these matrices. 

The results are too lengthy to give in full here. The 
general flavor is given in Figures B and C. Figure B 
( p  = 2) and Figure C ( p  = 6) are semi-log plots of the 
ratio of the average SEB for each method t o  the average 
SEB for least squares. A point above the SEB = 1 line 
indicates the superiority of least squares. The abscissa is 
simply the eigenvalue pattern. Thus, the condition 
number of the correlation matrix increases from left t o  
right. For both p = 2 and p = 6 there are clear gains 
for the ridge methods relative to least squares when a1 
(the canonical regression coefficient associated with the 
largest eigenvalue) is large. However, the gains become 
losses when there are substantial ails associated with the 
smaller eigenvalues, provided the condition number of 
the matrix is not too large. For extreme eigenvalue 
patterns, there appear to be guaranteed gains from the 
ridge methods, irrespective of the a’s, a t  least within the 
range of a patterns we studied. The basic point is that 
for moderately ill-conditioned matrices (say correspond- 
ing t o  the degree of collinearity and multicollinearity 
studied in the paper) it is not a t  all clear that ridge 
methods offer a clear-cut improvement over least squares 
except for particular orientations of 0 relative to the 
eigenvectors of X’X. 

Looking again more closely at, Figure A (as well as 
other similar plots not given here), we see that there were 
cases where a1 was in fact the dominant component, even 
though no explicit decision was made to make it so. This 
is a result of the choice of particular levels of factors 
BETA, MCL, and COR. Perhaps a more suitable procedure 
would have been to choose the orientations of the a’s 

randomly, or even better, to choose combinations (a, A) 
in a systematic experimental design. 

The Monte Carlo computations just discussed were 
performed using FORTRAN programs on a CDC 6400 com- 
puter. The random normal deviates used were generated 
using a library routine NORMAL based on a method pro- 
posed by Marsaglia and Bray [6]. The uniform random 
numbers used by NORJIAL were produced by a multipli- 
cative congruential generator using modulus 248 and 
multiplier 513. Because the simulations were intended to  
be illustrative and preliminary, no attempt has been 
made to determine standard errors for the ratios of SEB 

in Figures B and C. All the curves in a plot were based 
on the same sets of randomly generated least-squares 
estimates dLs. However, different plots mere based on 
independent samples of random deviates. 
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Comment 
RONALD A. THISTED* 

Dempster, Schatzoff, and Wermuth have taken on the 
task of determining how best to achieve in practice the 
gains over least squares that are guaranteed to us in 
theory when the regression coefficients number three or 
more. They have given us a catalog of rules and, within 
the limitations of their study, have given us much insight 
into the behavior that these rules display and their 
performance relative to one another. Their conclusions 
are striking, particularly their assertion that ridge- 
regression rules are markedly superior to Stein-type 
estimators, and it is primarily toward this result that I 

* Ronald A. Thiated is Assistant Profeasor, Department of Statistics, University 
of Chicago, Chicago, IL 80637. This work was funded in part by B National Science 
Foundation Eraduste fellowship. 

shall direct my attention. Several remarks are in order 
which perhaps will clarify the scope and generality of 
their findings. These comments are primarily concerned 
with the relative merits of RIDGE estimators and Stein- 
type estimators. 

The study attempts to  separate the effects of col- 
linearity, multicollinearity, and eigenvalue pattern by 
including separate factors for each of them in the ex- 
periments. However, both SPE and SEB for OREG, RIDGM, 

and STEINM depend upon XTX only through its eigen- 
values. Furthermore, higher levels of COL (an MCL in 
Experiment 2) simply represent additional broadening 
of the eigenvalue spectrum. Consequently, it is not 
surprising to see significant main effects for each of these 
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factors and nonsignificant interactions in Table 3. It is 
important to recognize that these factors are not different 
effects but one and the same-the effect of highly unequal 
eigenvalues. As the reduction to principal components 
shows, multicollinearity and collinearity ‘affect SEB and 
SPE only to the extent that they spread out the eigen- 
values of XTX. 

After discussing the optimality of RIDGE and STEIN 

rules, each of which is Bayes for a particular prior dis- 
tribution on (Y and any quadratic loss, the authors proceed 
to require a “rule for determining k from the sample 
data.” Of course this simply won’t do for the subjectivist 
Bayesian, for whom k represents a judgment on the 
precisions of components of a. Further, it is important 
to  note that we may forfeit the previously mentioned 
optimality if k is a function of the data. 

It is curious that STEINM does so badly with respect to 
SPE. It is well known [2] that the problem of estimating 
regression coefficients with SPE loss is equivalent to  
estimating the mean of a multivariate normal distri- 
bution with equal variances and loss function L(S, @) 
= 116 - @1[*/u2. Furthermore, Efron and Morris [l] show 
that in the latter problem the James-Stein positive-part 
rule cannot be substantially improved upon in very much 
of the parameter space. From the fact that STEINM is 
so badly beaten in SPE by RIDGM we must conclude that : 
STEINM is not equivalent to the James-Stein rule; the 
parameters chosen in the study are restricted to regions 
of the parameter space more favorable to RIDGE rules 
than to STEIN-type rules; or that in this particular trip 
to  Monte Carlo the house has taken its cut, and that the 
results we see are not representative. This observation 
brings us to our final point. 

Bayes rules are not optimal only when the statistician 
has quantified his prior beliefs about (Y by specifying a 
probability distribution for it. They are also optimal, 
for instance, when the parameters in each experiment 
actually are generated by some random mechanism, the 
distributional properties of which are known to the 
statistician. In  the latter case it makes sense to speak of 
a “correct” prior distribution for a. The authors are 
correct in their remark (p. 80) that, 

To assert that RIDGE is better [than STEIN] in practice is 
equivalent to asserting that its prior assumptions are more 
nearly correct over the range of the statistician’s experience. 
Note especially that if the RIDGE prior is correct then the RIDGE 
estimator is optimum for any quadratic loss function, including 
SEB and SPE. 

Consequently, when we observe RIDGM to  be the big 
winner both in SEB and SPE, a rough application of Bayes 

theorem leads us to conclude with high posterior prob- 
ability, that for these data, the RIDGE prior and not the 
STEIN prior is “more nearly correct.” 

Consider, then, the random mechanism by which (Y is 
selected in this study. First of all, @ is fixed, then a random 
orthonormal matrix G is generated. For any fixed vector 
u, Gu is uniformly distributed on the p sphere of radius 
IIu//. The matrix G corresponds to CT of Appendix A. 
Consequently, (Y = GT@ has a uniform distribution on 
the p sphere of radius il@ll. It is easy to see that, since 
a, -a, and (- a1, a2, . . . , a,) have the same distribution, 

Hence, the method used to generate (Y has mean zero and 
equal component variances. Thus the prior variances of 
the ail by which we mean the variances of the random 
mechanism generating the ai in this study, are equal and 
not proportional to the inverse eigenvalues. 

As the authors point out in the quoted passage, this 
setup is highly favorable to RIDGE, and it ought not to  
be surprising that RIDGM beats STEINM even on SPE, the 
loss function most favorable to STEIN-type estimators. 
Furthermore, the more disparate the eigenvalues, the 
worse STEIN-type rules will do in this experiment com- 
pared to RIDGE rules, since the STEIN prior is less like the 
“correct” prior. It is easy to predict on these grounds 
that STEIN~I  will improve its performance in Experiment 
2, since there are two vectors of eigenvalues added to 
those of the first experiment, each of which is less extreme 
than one of the vectors from the first experiment, so that 
the average spread in the eigenvalues is reduced. STEINM 

improves dramatically. 
Let us return then t o  the data analyst, “who knows 

only his data and not the underlying parameters,” and 
let us leave him with two words of caution. The condi- 
tions represented in the present experiment may not 
represent those likely to occur in practice. Further, it is 
perhaps still too early to recommend ridge regression for 
routine use in data analysis. 
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Rejoinder 
A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH 

1. INTRODUCTION 

Since the discussants’ comments fall into a few distinct 
categories, we shall organize our responses by topic 
rather than respond to each discussant separately. We 
preface our remarks with some comments of a general 
nature. 

Our first observation on reading the six sets of com- 
ments is that all of the discussants are primarily in- 
terested in RIDGE methods, or in the comparison of RIDGE 

and STEIN procedures. Thus despite years of widespread 
use of techniques such as stepwise regression and regres- 
sion on principal components, there is no mention of 
these methods by the discussants. We believe that the 
indicated direction of interest is due to  a combination of 
the lack of theoretical understanding of the latter classes 
of procedures, and the analytical and philosophical 
attractiveness of the RIDGE and STEIN approaches. 
Possibly the performance comparisons produced by our 
study are such as to dampen interest in many common 
methods. Two of the discussants, Allen and Smith, ex- 
pressed interest in the REGF methods, but did not offer 
substantive remarks. 

A second observation is that there are no comments on 
the analysis of the results of the experiments. We were 
worried that someone might question our use of OREG in 
producing Table 5, while we clearly suggested in the 
paper that methods such as RIDGM and FREGF offered 
possibilities for improved estimation. 

Third, we are impressed by the variety and seriousness 
of the commenters’ views on the broad classes of methods 
covered by the labels RIDGE and STEIN. We believe that 
the state of the art in these areas is well reflected in the 
discussion. 

I n  considering the specific points raised by the dis- 
cussants, it appears that most of these may be appro- 
priately classified as follows : 

1. Design of the experiment, 
2. Theoretical aspects of RIDOF, and STEIN methods, 
3. Estimation of the RIDGE parameter (k), 
4. Criteria for evaluating alternate methods, and 
5.  What to do with real data. 

We discuss in the next section what we consider to be the 
relevant aspects of various comments pertaining to these 
issues. 

2. DISCUSSION OF SPECIFIC COMMENTS 
2.1 Design of the Experiment 

As with any Monte Carlo type of study, hard conclu- 
sions must usually be confined to the domain of investi- 

gation, with extrapolation to unexplored regions of the 
parameter space difficult at best, and often hazardous. 
Accordingly, we have not made sweeping claims as to the 
general applicability of our results, but rather have at- 
tempted to  explore the effects of some parameters of 
interest on a large number of different estimation pro- 
cedures. 

Two of the discussants’ papers (Allen; and Bingham 
and Larntz) argued for variation of (Y rather than @ in 
the experimental design, while a third (Thisted) stressed 
that the design factors COL and MCL affect the risk func- 
tions based on SPE and SEB only through the A’s, for 
OREG, RIDGM, and STEINM. In both instances, our rationale 
was to provide comparative evaluation of these pro- 
cedures with various types of stepwise selection of vari- 
ables. We expected these comparisons to be sensitive to  
variation in the P’s as well as to the pattern and degree of 
correlations in the independent variables. It should be 
pointed out that in the simulation examples presented 
by Hoerl, based on random selection of the a’s with 
specified norm, RIDGix had very high efficiency relative 
to the maximum potential, over wide ranges of the norm. 

A second comment on the design, made both in the 
Thisted and Efron and Morris papers, has to do with our 
use of a random rotation matrix. Their claim is that this 
type of randomization would tend to symmetrize the 
prior distribution of the P’s, resulting in exchangeable 
prior distributions that would naturally favor RIDGM 

against other methods. This idea is intriguing, but is 
not made very precise in the comments. Perhaps it 
means that random rotation makes the coordinates Q! 

distribute in a way which appears exchangeable over the 
160 data sets. Note that both RIDGE and REGF assume 
prior exchangeability among the components of @, but 
are very different methods which dominate each other in 
different stituations, so exchangeability is not a sufficient 
description of a prior distribution of @ to  guide the data 
analyst. In any case, the actual distribution of @ over 
our 160 data sets is a very simple, known, discrete dis- 
tribution, as opposed to the symmetrized distribution, 
whatever that is. It seems a small swindle to base inter- 
pretations on an artificially scrambled distribution of a’s 
rather than the simple known distribution of @. An 
interesting question remains : how should we have syste- 
matically varied our factor @ to produce fairer com- 
parisons of the relative strengths and weaknesses of 
RIDGE and STEIN? 
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2.2 Theoretical Aspects of RIDGE and STEIN Methods 

Efron and Morris state that STEINM is not the James- 
Stein rule, as we have been careful to note in Section 
2.4.1. We wish to point out that JSTEIN and STEINM are 
both STEIN-type procedures in that they shrink uniformly 
on all principle axes, and that they differ only in the 
degree of shrinkage. We maintain our contention that 
JSTEIN would have performed worse on our data than 
STEINM. It thus appears that statistical theory is in 
conflict with our empirical results. 

We believe that statisticians should no longer accept 
without question the assumptions of Efron, Morris, and 
Thisted that statistical techniques should be evaluated 
theoretically by means of frequentist risk functions de- 
pending on unknown parameter values. We were careful 
in our paper to define SPE and SEB in terms of actual 
errors of estimation, and not in terms of theoretical 
averages of such errors, whether frequentist or Bayesian. 
Our comment may be illustrated by Thisted’s statement, 
“both SPE and SEB for OREG, RIDGM, and STEINM depend 
upon XTX only through its eigenvalues,” which is 
literally false according to our definitions. It is also false, 
in general, when a prior distribution of @ is available, 
whether SEB and SPE are reinterpreted as posterior ex- 
pectations given a data set, or are prior expectations of 
such Bayes risks. The statement is true for prior ex- 
pectations of a game player who knows @, but the 
relevance and applicability of this game to data analysis 
is a matter of current dispute. 

Having expressed serious reservations about the mean- 
ing of the Efron-Morris-Thisted theory, we do wish to 
express our admiration for their efforts, and our wish to 
understand the insights which they feel the theory gives. 
Their comment about the general incompatibility of 
minimax and empirical Bayes seems to us t o  capture a 
real dilemma of much of statistics: except in rare, 
mathematically nice, and overly taught, circumstances, 
there is no sure-thing principle t o  protect us against the 
need for hard prior judgments. 

2.3 Estimation of the RIDGE Parameter 

Efron and Morris’s statement that “. . . ridge esti- 
mators are a class of Bayes rules against normal priors 
indexed by k, and the effectiveness of a given rule 
depends upon how k is estimated” summarizes the 
situation very concisely. 

We believe that we have demonstrated remarkable 
empirical properties for the RIDGM rule for estimating k. 
We have received a letter from Professor Hoerl, written 
after his original commentary on our paper, in which he 
alludes to a recent comparative evaluation of a number 
of ridge estimators over a spectrum of signal-to-noise. 
He states, “Based on a broad comparison of all the 
algorithms, with p = 10, yours is the most effective. In  
fact, the degree to which your algorithm achieves near 
potential is startling.” We are not sure whether he is 
referring to the study presented in his discussion of our 
paper, or to a further exploration not yet reported. 

We agree with Efron and Morris that it would have 
been desirable to include EBMLE in our set of RIDGE 
methods. Our failure to  do so was due t o  an error which 
led us to believe until too late in the study that RIDGM 

was equivalent to EBMLE. We would conjecture that 
EBMLE should be slightly better than RIDGM on our 
criteria. 

Perhaps there are some Bayesian statisticians as 
Thisted states “for whom k represents a judgment on 
the precisions of components of (Y.” A more usual con- 
temporary Bayesian formulation would be to regard k as 
an unknown which needs a prior distribution just like 
other unknowns. The use of an estimated @ associated 
with an estimated k is a crude approximation to  the 
center of a posterior distribution, which is reasonably 
stable across a plausible range of smooth priors on k. 
We did not spell this out because our paper is not pri- 
marily Bayesian in outlook. We do feel, however, and 
Efron, Morris, and Thisted apparently agree, that the 
success of RIDGM must relate to some type of fit between 
the design of our study and the Bayesian assumptions 
which make RIDGM a near-optimum technique. 

2.4 Criteria for Evaluation of Alternate Methods 

Smith, and Efron and Morris have addressed them- 
selves to the question of criteria for comparing different 
methods. 

Specifically, Smith is concerned about our use of SPE 

as a measure of predictive error, because it is defined only 
a t  the same design points used in the experiment. He 
correctly points out that it “. . . gives no insight into the 
greater scope for improvement which occurs . . . when 
the directions in which predictions are required turn out 
to be those which are poorly estimated on the basis of 
the original design matrix.” It would have been interest- 
ing to expand the design to incorporate evaluation of 
predictive errors at points other than those included in 
the original design. 

Efron and Morris state that JSTEIN should not be 
applied with the loss SEB, because it is not minimax in 
this case. We believe, however, that SEB is a very im- 
portant criterion, since it often happens that the principal 
objective of a regression study is to estimate the values 
of the regression coefficients. 

2.5 W h a t  to Do with Real Data 

The problem of what to do with real data is not solved 
by our study. Efron and Morris, and Thisted correctly 
caution against the routine application of any shrinkage 
rule, and indeed we have adopted exactly the same 
posture in our paper. None of the discussants offered any 
concrete proposals, however, as to how one should pro- 
ceed when analyzing real data. Nor were there any 
comments on our suggestions other than those by Hoerl, 
who indicated that he has experimented with a number 
of versions of our suggestion to divide data into subsets 
as a basis for comparing different estimation techniques. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 0

8:
26

 0
3 

O
ct

ob
er

 2
01

7 



1 06 Journal of  the American Statistical Association, March 1977 

Although he claims to have found such techniques to be 
deficient, we would be most interested in seeing the 
results. In terms of a predictive error criterion such as 
SPE, or the predictive mean square error advocatcd by 
Smith, it would seem that comparison of thc prcdictive 
capabilities of various methods from one subset to 
another would provide a reasonable empirical basis for 
selecting a particular method in a given situation. 

3. CONCLUSION 
We feel that a number of interesting and uscful points 

have emerged from the various discussions of our paper, 

and believe that the combincd effcct will be to stimulate 
further research, both theoretical and cxperimental. We 
view the problem of what to  do with rcal data as being 
of paramount importance and we hopc that some of the 
suggestions made in the concluding scction of our paper 
will be followed up. This is not mcant to preclude inde- 
pendent approaches, for thcre is certainly ample room 
for development and exploration of new ideas on many 
facets of the problem. The potcntial for large gains 
clearly exists. We need to dcvclop tools for better ex- 
ploiting this potential. 
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