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A Simulation Study of Alternatives to

Ordinary Least Squares

A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH*

Estimated regression coefficients and errors in these estimates are
computed for 160 artificial data sets drawn from 160 normal linear
models structured according to factorial designs. Ordinary multiple
regression (OREG) is compared with 56 alternatives which pull
some or all estimated regression coefficients some or all the way
to zero. Substantial improvements over OREG are exhibited when col-
linearity effects are present, noncentrality in the original model is
small, and selected true regression coefficients are small. Ridge re-
gression emerges as an important tool, while a Bayesian ex-
tension of variable selection proves valuable when the true regres-
sion coefficients vary widely in importance.

KEY WORDS: Least squares; Multiple regression; Ridge regression;
Simulation; Variable selection.

1. INTRODUCTION

We report here summary results of a numerical study
undertaken to compare the properties of a collection of
alternatives to ordinary least squares for multiple linear
regression analysis. The approach is a broad-brush ex-
ploration of the relative performance, from the stand-
points of estimation and prediction, of different tech-
niques over a range of conditions which are systematically
varied according to factorial designs. The variable factor
levels include different patterns of true regression coeffi-
cients, different amounts of noncentrality, and different
degrees of collinearity or multicollinearity among inde-
pendent variables. The substantive conclusions from the
study are indications of possible drastic improvements
over least squares, especially through the technique of
ridge regression, and especially when a high degree of
correlation exists among the independent variables.

We have not attempted to study alternatives to stan-
dard regression analysis which are designed to be robust
against failures of the normal error model. Instead we
have focused on the recently prominent difficulties with
least squares under the normal model. From a frequentist

. standpoint, it has long been recognized that good mean
squared error properties do not necessarily follow from
the celebrated minimum variance unbiasedness proper-
ties of least squares, since in certain regions of the pa-
rameter space the loss from increasing the squared bias
can be overcompensated by reducing variance. Important
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work by Charles Stein and his colleagues, (e.g., [1, 13,
187), has served to draw attention to the potential weak-
ness of straightforward maximum likelihood estimation
when more than a very few parameters must be estimated.
Efron and Morris [4, 5, 6, 7, 8, 9] have recently extended
and advocated the Stein approach at great length. Also
taking a mainly frequentist point of view, Hoerl and
Kennard [11, 12] introduced and defended ridge regres-
sion as having good mean squared error properties in
practically relevant regions of the parameter space, at
least when the independent variables multicorrelate
strongly. (See [2, 10, 17] for various views of ridge regres-
sion.) From the standpoint of a subjectivist Bayesian
theory, posterior mean squared error is substantially
reduced if a flat prior distribution can be replaced by a
prior distribution which clusters about some prior mean,
taken here to be zero. (See [15, 217 for recent Bayesian
discussions of Stein-type and ridge-type estimates.)

Alongside the alternative regression methods just
cited, the present study includes forward and backward
selection methods and Bayesian selection procedures
proposed in [37]. Thus, we hope to draw attention to the
substantial improvements over ordinary least-squares
methods which are afforded by a wide variety of alterna-
tive methods.

Our results are empirical results derived from numeri-
cal experiments. Specifically, we created two series of-
artificial data sets. The first series, referred to as Experi-
ment 1, contains 32 data sets in the form of a 2% factorial
design, while the second series, or Experiment 2, contains
128 data sets in the form of a quarter replicate of a 2°
design. Each data set was drawn from a normal linear
model with 6 regression coefficients to be estimated and
14 degrees of freedom for error. Each of 57 estimation
procedures was applied to each of the 160 data sets,
yielding a set of 6 estimated regression coefficients, which
were compared to the true regression coefficients in the
simulated models, using mainly the two end-point
criteria sEB (sum of squared errors of betas) and sPE
(sum of squared prediction errors).

Basic notation, including precise definitions of sEB and
SPE, appears in Appendix A. Further details of the 57
estimation procedures appear in Section 2 and Appendix
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B, while the design of the study is described in Section 3
and Appendix C. The analysis of experimental data is
presented in Section 4. Further detailed analyses may be
found in Wermuth [197.

The study is broad in some ways, e.g., in its range of
estimation procedures and range of underlying models.
In other ways, the study is narrowly focused, e.g., in its
restriction to 6 and 14 degrees of freedom and its limita-
tion to just one replication of each model. In view of the
latter restriction, it is clear that we are not attempting
detailed analysis of the frequency properties of estimators
under each specified model, and so we are not meeting
the objectives of the mathematical statistician who
wishes to calculate such frequency properties. We would

“prefer to shed light on the conceptually more difficult
task of the data analyst, who knows only his data and
not the underlying parameters. Our data base enables us
to study the actual errors which a data analyst using
specified rules of estimation would encounter under a
simulated range of data sets which we believe could
typify certain types of real world experience.

Any particular user of regression techniques may
legitimately criticize us for not including the specific
variant procedures which interest him in the context of
a specific class of real world situations. For such a reader,
we believe that we have provided a concrete illustration
of a type of study which can produce interesting or even
startling results. Given adequate computational facility,
whose availability continues to develop rapidly, the study
could be repeated holding the design matrix X fixed at
the values for a given data set and varying the factors
and procedures of greatest concern to a particular data
analyst, including of course the shape of the error distribu-
tion and appropriate robust procedures, as may be in-
dicated either by prior understanding of circumstances or
by the properties of the given data set. We hope, there-
fore, that we may be contributing to the development of
a methodology which will ultimately be of broader use
than the specific results of this paper.

2. ALTERNATIVES TO LEAST SQUARES
2.1 Overview

The 57 estimation procedures under study can be
grouped into several major classes or families each con-
taining a number of variants. Both the classes and the
variants within each class are denoted by capitalized
abbreviations. For example, RIDGE denotes a family of
ridge regression techniques, while within the family we
study five specific procedures labelled sribpG, RIDGN,
CRIDG, 1CRIDG, and 2CRIDG.

The classes are distinguished by different technical ap-
proaches adopted in the attempt to reduce error of estima-
tion, but all approaches produce estimates which shrink
or pull back the least-squares estimates toward the origin,
Shrinking can be justified either by the frequentist yard-
stick of improvement in the sum of variance and squared
bias, or by the Bayesian device of a prior distribution

more or less clustered about the origin. The two extremes
in our list of procedures are OREG, or ordinary least
squares, which does not shrink, and zero which achieves
total shrinkage by setting all estimated regression- coeffi-
cients to zero. Between these extremes the procedures
differ in the pattern and degree of shrinking. In Section
2.2 we discuss procedures in the classes STEIN and RIDGE
which shrink each estimate according to a continuous
formula, while in Section 2.3 we describe the families
FSL, BSL, CP, REGF, RREG, and PRI which shrink discretely
in the sense that selected coefficients are pulled back to
zero, or nearly to zero. The concepts used to define
specific variants within the families are described in
Section 2.4.

2.2 Continuous Shrinking Methods ‘

Following the notation established in Appendix A, the
standard least-squares estimator b = (X7X)~'X7Y can be
generalized to - .

8 = (XX + kQ)—XTY (2.1

where Q is a positive definite symmetric matrix and ¥ is
a nonnegative scalar. In practice, Q is allowed to depend
only on the design matrix X, while k is generally allowed
to depend on Y as well.

The choices Q = X7X and Q =1 in (2.1) define the
classes of estimators which we call sTEIN and RIDGE.

The principal components transformation C defined in
Appendix A simultaneously diagonalizes both X7X and
I, and therefore provides a simple representation for
RIDGE estimators. After transforming we deal with
@z = C8z, a = CB, and « = C@ where C is defined by
(A.5) and (A.6). By transforming (2.1) we see that the
components of &z and a are related by

&.‘R = f.-a,- ’ 1 = 1, 2, ey P, (22)

where :
fi=N/ i+ k), (2.3)
and Ay, Ay, ..., A, denote as in (A.6) the eigenvalues of

X7X. The analogs of (2.2) and (2.3) for the sTEIN estima-
tor &s = Cfs are likewise seen to be

g = fa;, 1=12 ...,p, (24

where

f=10+k . (2.5)

Note that the sTEIN estimator 35 = f8, and so shrinks
all components, whatever the coordinate system, by the
same factor f. )

As remarked in Appendix A, the a; have independent
N (o, 0?/);) sampling distributions, whence from (2.2)
and (2.4) the &:r have independent N (fiai, fi2a%/As)
sampling distributions and the d:s have independent
N (fai, f2a?/\;) sampling distributions. For a given value
of k, the f; are smaller when the A; are smaller, and at the
same time the error variance o?/A; of the least squares a;
is larger. This the rRIDGE approach applies more drastic
shrinking where it has greater effect in reducing mean
squared error. The sTEIN approach by contrast shrinks
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all components equally. The advantage of RIDGE is po-
tentially large, therefore, when certain of the A; are close
to zero, and when the loss function weights components
‘equally, as does sEB defined in (A.10) or (A.12). We may
* anticipate less advantage of RIDGE over sTEIN when the
loss function weights the components by A;, as does sPE
defined in (A.11) or (A.13).

The general estimator (2.1) has a simple Bayesian in-
terpretation. If 8 has the multivariate normal prior dis-
tribution N (0, »?Q~1), then the posterior distribution of
Bis N3, (X™X/o? + Q/w?)™), where § is determined by
(2.1) with k given by

k= d?/u? . (2.6)

Thus 8 is a posterior mean corresponding to a prior
N (0, o) distribution for 8, and §s is a posterior mean cor-
responding to a prior N (0, «*(X7X)~!) distribution for 8.
In principal component terms, if the a; are a priore in-
dependently N (0, «?) distributed, then they are a
posteriort independently N (&:z, fic?/M:) distributed for
i=1, 2, ..., p. The corresponding result for sTEIN
estimators is that if the a; are a priori independently
N (0, w?/X;) distributed, then the a; are a posterior? inde-
pendently N (dis, fo?/\;) distributed for< =1, 2, ..., p.
For a Bayesian, therefore, the choice between RIDGE or
STEIN hinges on whether he regards the prior variances
of the a; to be roughly equal or roughly inversely propor-
tional to the A;. To assert that RIDGE is better in practice,
is equivalent to asserting that its prior assumptions are
more nearly correct over the range of the statistician’s
experience. Note especially that if the RIDGE prior is
correct then the RIDGE estimator is optimum for any
quadratic loss function, including both sEB and sPE.
Corresponding remarks can of course be made about the
Bayesian view of sTEIN.

The precise realization of a RIDGE or STEIN estimator
requires a rule for determining % from the sample data.
These rules are discussed in Section 2.4.

2.3 Discrete Shrinking Methods

We consider here six classes of estimation procedures
which may be classified into three groups: Group 1 in-
cludes FsL, BsL, and mMcP; Group 2 includes rEGF and
RREG; and Group 3 includes PRI.

Group 1 consists of methods which partition the com-
ponents of 3 into two subsets. The components in one
subset are estimated by least squares under the constraint
that the components in the remaining subset are zero.
The psL or forward selection methods proceed by intro-
ducing independent variables into the least-squares pro-
cedure one at a time, choosing at each step the variable
which produces the largest reduction in sum of squares
at that step. An rsL method chooses among a set of
p + 1 partitions of the p independent variables, i.e., one
partition which fits r variables for each of r = 0, 1,
2, ..., p. The BsL or backward selection methods proceed
by dropping variables one at a time from the complete
least-squares fit in such a way that the increase in

k)

residual sum of squares is minimized at each step. A BsL
method chooses among p + 1 partitions of the inde-
pendent variables, one for each number r of variables
selected, as do the FsL methods, but the set of partitions
may differ between BsL and rsL, depending on the data
set. The McP methods consider all 27 possible partitions of
the p independent variables and select one for fitting.
The abbreviation mcP is an oblique reference to the C,
statistic which Mallows [16] uses as a criterion for select-
ing among all possible regressions. The specific variants
of Fsi, BsL, and mcP used in our study are described in
Section 2.4.

From the standpoint of a Bayesian whose prior dis-
tribution for @ is centered about the zero vector, the rsL,
BsL, and cP methods have the weakness that zero pos-
terior estimates for a subset of 3 components follow in
general only from a prior judgment that those com-
ponents are precisely zero. In practice it may be plausible
to judge a priori that some subset of the § components
are close to zero, but it would rarely be possible to match
prior judgments with a subset chosen from the data by a
somewhat ad hoc selection criterion. The REGF procedures
proposed by Dempster [3] attempt to soften the diffi-
culty by supposing that some subset of p — r independent
variables have zero § components, and supposing for
fixed = that all (;?,) possible subsets are a priori equally
likely. The equiprobability assumption might well be
altered in real world practice, but is the most plausible
assumption to make in a study of automatic data analysis
procedures. The precise definition of a rREGr procedure
requires a device for choosing r, and a specific rule for
computing a posterior probability that each of the (,2,)
subsets is the true subset with zero regression coefficients.
The least-squares estimates for each postulated set of r
nonzero regression coefficients are then averaged over
the posterior distribution of subsets to yield the REGF
estimator §.

The second class of procedures in Group 2, namely
RREG, is a forward selection analog of REGF which avoids
the necessity of computing least-squares estimates for
all (,%,) subsets of size r, a task which becomes increas-
ingly onerous as r and p increase. An RREG procedure
carries out the REGF procedure for r = 1, and then repeats
the REGF » = 1 procedure on the residuals from the first
pass, and so on until the residual sum of squares is judged
to be small enough. The rrEG estimate is formed by
summing over the 3 produced by each application of
REGF. We do not recommend that RrREG should neces-
sarily be pursued as a practical tool, in part because of its
ad hoc nature and in part because the iterations were
observed to converge very slowly in the presence of even
a few regressors which are highly collinear.

Finally, the pr1 procedures of Group 3 are selection
procedures based on the principal components representa-
tion of the model. Assuming that the principal compo-
nents, as defined in Appendix A, are ordered so that
A1 > A2 2...2 ), a commonly used procedure is to
modify the least-squres estimate a of a so that the last
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p — r components are set to zero, yielding

8, 0,0,...,0) . @.7)

@ = (al, azy ..

The corresponding § is computed as CT&. A specific
variant of PRi is defined by a rule for determining r. -

2.4 Fifty-Seven Varieties

OREG and zERO are single procedures, but each of the
families STEIN, RIDGE, FSL, BSL, MCP, REGF, RREG, and PRI
have several specific variants. Variants of three kinds are
used. First, in the case of sTEIN and RiDGE, there are
methods which aim directly at reducing squared error,
whether through frequency concepts or through empirical
Bayes concepts. Second, in the case of the remaining
families, there are methods related to F tests for the
significance of variables not yet included in the fit.
Third, there are three methods associated with each
family, indicated by the prefixes C, 1C, and 2C, which
control the maximum permissible deviation from the
least-squares estimator b, where such deviation is mea-
sured in terms of standard confidence contours about b.

2.4.1. Continuous Shrinking Methods. In the rRIDGE and
STEIN classes, the specific variants are SRIDG, RIDGM,
CRIDG, 1CRIDG, 2CRIDG, and STEINM, CSTEIN, 1CSTEIN,
2csTEIN. The precise definitions of the last three pro-
cedures in each class are given in Section 2.4.5. The sripG
procedure seeks to minimize the frequentist expectation
of the criterion sEB defined by (A.12). It is easily shown
that this expectation is minimum when

r A-;(ka-;z —_ 0'2) _
i=1 (A + k)3 B

The sripG method is defined by choosing & to satisfy
(2.8), after s? from (A.3) and &;z from (2.2) are sub-
stituted for ¢ and a; in (2.8). The rIDGM and STEINM
methods are motivated by the Bayesian interpretation
of RIDGE and sTEIN discussed in Section 2.2. The prior
distribution for the @; which leads to the posterior mean
interpretation of RIDGE also implies that the observable
least-squares estimators a; are marginally independently
N, o* + ¢*/\:) distributed. It follows that the prior
expectation of 3 a2/ (w? + o%/A;) is p. RIDGM chooses & to
make this quantity equal to its prior expectation, when
s? is substituted for ¢® and k£ = ¢?/w?®. Similarly, the sTEIN
procedure is associated with a marginal N (0, («? + ¢2)/A;)
distribution for the a;, and sTEINM is defined by the choice
of k& such that Y Aa:?/(w? + 0?) equals its marginal
expectation p, where again s? is substituted for ¢? and
k = o?/w?. It is perhaps unfortunate that we did not
adopt the specific choice of k recommended by Stein. In
retrospect, however, we can see that Stein’s method would
have performed worse on our data sets than sTEINM, the
reason being that improved estimates on our data sets
require STEIN to shrink more than sTEINM provides, while
Stein’s recommendation shrinks considerably less.

2.4.2. Subset Regression. The FsL variants group
naturally into the three subclasses: FsLa, OFsL, 1FSL;

(2.8)

FSLN, 1FSLN; and cFsL, 1cFsL, 2¢FsL. The first two sub-
classes are defined using different F statistics. Suppose
that r variables have been included in the fit, and we are
considering whether to include the (r + 1)st forward
selected variable. Define

RSSy — R8Sr41

(2.9)

1 =
BSSpp1/(mn — 7 — 1)
and

RSS, — RSS,

"7 Rss,/(n —p)

where mss; denotes the residual sum of squares after
fitting the best forward selected ¢ variables. F; and F,
are F statistics with nominal degrees of freedom (1,
n—1r—1) and (p — r, n — p), respectively. The spe-
cific procedures FsLa, OFsL, and 1FsL are based on the
statistics ¥, computed at each stage of selection. Fsra
selects a further variable if the F, test rejects at level
.05/(p — r), oFsL selects if F; rejects at level .05, and.
1rsL selects if F, > 1. FsLa thus sets a fairly rigorous

(2.10)

standard of significance for a variable to be included,

OFsL uses a mild standard, and 1FsL includes a variable
if there i1s any indication at all of positive effect with no
requirement of a small tail area. Similarly, FsLN selects
a further variable if F, exceeds its nominal .05 critical
value, while 1FsLN selects if #; > 1. The C, 1C, and 2C
variants will be defined in Section 2.4.5.

The corresponding BSL variants are: BSLA, 0BSL, 1BSL;
BSLN, 1BSLN; and ¢BsL, 1¢BsL, 2¢BsL. The first two sub-
classes are again determined by the statistics F; and F,,
still defined from (2.9) and (2.10) except that rss, refers
to residuals from the backward selected fit of ¢ inde-
pendent variables. At the stage of deciding whether to
retain the (r + 1)st variable or drop it from the fit, a
value of F, less than its nominal .05/(p — r) critical
value indicates dropping the variable under procedure
BSLA. Level .05 is used similarly for oBsL, and the cri-
terion Fy < 1 is used for 1BsL. BsLN drops the (r + 1)st
variable if F; is less than its nominal .05 level, while
1BsLN drops a variable if F, < 1.

In the case of cp procedures, the F; criterion is not
always sensible because the best variable set of size r + 1
need not contain the best variable set of size r. We there-
fore consider only two subclasses: 0McP, 1McP; and cMCP,
1cmcP, 2cmcP. The procedures OmcP and 1McP use Fy at
nominal .05 level and F, = 1, respectively, as criteria for
passing from r to r + 1.

2.4.8. REGF Methods. There are two parallel series of
REGF methods, typically labelled REGF and pDRGF, which
are defined by alternative prior distributions of §. The
two series each appear in three subclasses analogous to the
three subclasses of FsL or BsL methods: FREGF, 1FREGF;
OREGF, 1REGF; CREGF, ICREGF, 2CREGF; and FDRGF,
1FDRGF ; ODRGF, 1DRGF; CDRGF, ICDRGF, 2CDRGF.

The structure of each of these methods runs as follows.
A non-Bayesian scheme is used to select an r on r = 0,
1, 2, ..., p, whereupon a Bayesian analysis takes over.
The Bayesian analysis assumes that exactly r of the p
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components of § are nonzero, but assumes that all (%)
possible subsets are equally probable a priori. Suppose
that 4, denotes the class of (%) subsets consisting of r of
the p independent variables. For each I & 4,, a posterior
probability w(I) is computed for the event that I is the
true subset. Also, for each I & 4, we compute an estimate
(1) whose components in the I positions consist of least-
squares estimates of the corresponding § components,
assuming that the remaining coefficients are all set to
zero. These remaining coeflicients are of course all esti-
mated at zeroin § (). The final estimator § is defined to be

8= X «DBW . (2.11)

9E9-

The details of how to compute w(I) for each of the rREGF
and DRGF series are given in Appendix B.

In Appendix B we also give reformulated definitions
appropriate for rREGF of the F, and F, criteria defined in
(2.9) and (2.10). FREGF and RDRGF use & nominal .05
critical level for the F, criterion, and 1FREGF and 1FDRGF
use F'; = 1 as the cutoff point, where in both cases larger
values of F, force an increase from r to r + 1. The pairs
OREGF, ODRGF and 1REGF, 1DRGF operate similarly in
relation to the F, criterion.

The RREG variants are: RREG1; and CRREG, 1CRREG,
2CRREG. RREG1 makes repeated use of the FREGF tech-
nique with 7 = 1 and stops when the F, criterion as-
sociated with FrEcr fails to indicate proceeding from
r=1tor = 2.

2.4.4. Regression on Principal Components. The PRI
variants are: PRIF, 1PRIF; PRIB, 1PRIB; and CPRI, 1CPRI,
2cpr1. The methods prIF and PRIB both use the F; cri-
terion (2.11) at its nominal .05 level, while 1PRIF and
1PRIB use the critical value F; = 1. The difference is that
the F methods proceed through the estimators (2.7) in
the order r = 0, 1, ..., p while the B methods use the
orderr=p—1,...,0.

2.4.5. Confidence Contour Constraints. Finally, we de-
scribe the C, 1C, and 2C variants which are associated
with each family. As is well known, an ellipsoidal 1 — «
confidence region for B centered at the least-squares
estimate b is defined by

(8 — b)"XTX(8 — b)/p8 < Fpinpia

where F, n_p,1-o denotes the level « critical value for F
on p and » — p degrees of freedom. The idea of C, 1C,
and 2C methods is to limit the deviation of 3 from b by
requiring that § lie within an ellipsoid of the form (2.12).
This idea is similar to the limited risk proposal of Efron
and Morris [4, 5]. The C method uses @ = .05 and the
1C method uses F,,n_p.1- = 1. The criterion in the 2C
method is that the residual sum of squares is allowed to
rise by at most 20 percent. When p = 6 and n = 20, the
2C criterion is equivalent to the choice Fy n_p1 o = .46.

Given any value of Fp,n.p,1_« we can adjust the k in
RIDGE OT STEIN methods, or the r in the selection methods,
in such a way that the resulting estimator § is shrunk as
much as possible subject to the constraint (2.12). This is

(2.12)

81

the guiding principle of all of the C, 1C, and 2C methods.
For example, the 1cmcp method chooses the best subset
of independent variables of size r, when r is as small as
possible consistent with (2.12), choosing the right side in
(2.12) to be unity.

3. DESIGN AND EXECUTION

The plan of our study required drawing from the model
(A.1) with p = 6 and n = 20. Conceptually, this meant
fixing X, 8, and ¢?, and then drawing a random vector e
using a standard normal random number generator. In
practice, since all of our methods depend only on the
sufficient, statistics (A.2) and (A.3), we did not actually
generate X, e, or Y, but instead generated first X7X, and
then b and (n — p)s? where the latter required ran-
dom number generators to simulate the 6-variate
NG, «*(XTX)~") and X4 distributions. The 6-variate
normal was found by linear transformation of 6 standard
normal deviates and the X;2 was found by summing the
squares of 14 standard normal deviates. Uniformly dis-
tributed pseudorandom numbers were generated by the
algorithm described in [14], and were transformed to
normal random deviates by a table look-up procedure
applied to the cumulative normal distribution. Further
details may be found in {19, 207,

We made one drawing from each of 160 different
models. The factors and factor levels of the 2° structure
of Experiment 1 are described. After creating and par-
tially analyzing these data, we decided not simply to
replicate Experiment 1, but instead to create a somewhat
larger data set with more levels of certain factors and
generally less correlation among the independent vari-
ables. The result was the 128 simulated models of Experi-
ment 2, also described. At this point we decided to
analyze and report the results from Experiments 1 and 2
without creating another series of models or drawing
replicated data sets from the two available series.

The five factors in Experiment 1 are labelled 16, ROT,
coL, cEN, and BET. The first three of these define the
XTX matrix of a model. The two levels of factor E1G were
determined by

T = diag (32, 25, 16, 9, 4, 1)

. (3.1)
= diag (64, 16, 4, 1, .25, .0625)

where diagonal vectors of the diagonal matrices T should
be regarded as preliminary eigenvalues of X7X. The two
levels of E1G specified by (8.1) constitute one device for
putting into the experiment variation in the amount of
correlation among the independent variables.

The two levels of roT correspond to two replications of
matrices with eigenvalues fixed by a given level of EIG.
From a pair of 6 X 6 arrays of simulated standard normal
deviates, a pair of random 6 X 6 orthogonal matrices G
was created by Gram-Schmidt orthogonalization followed
by scaling to unit length. We then formed the four inner
product matrices GTTG corresponding to the four levels
of 16 X Rror. Finally, these four inner product matrices
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were reduced to four correlation matrices via scalar
division of each row and column by the square root of its
diagonal member. These correlation matrices specify the
four choices of XTX actually used at one level of coL. Note
that the eigenvalues of GTTG are given by T, but that
these are no longer the eigenvalues of the final correlation
matrices X7X.

The second level of coL is defined by modifying the cor-
responding X7X at the first level so that it has .99 in the
(1, 2) position, thus introducing substantial collinearity
between the first two independent variables. The modifi-
cation was not simply a replacement of the (1, 2) element
by .99, which could have destroyed positive definiteness,
but a linear transformation scheme described in Appendix
C. We have now described, modulo G, the eight matrices
XTX used in Experiment 1, corresponding to the eight
levels of E1¢ X ROT X COL. '

The factors cEn and BET jointly define 8 and o?. cEN
refers to two levels of the noncentrality parameter,
specifically

37(XTX)B/a? = 100

= 200 . 32)

The factor BET refers to two vectors of regression coeffi-
cients, specifically

6 = (32,25,16,9,4,1)

= (64, 16, 4, 1, .25, .0625) . (3:3)

In practice, two values of ¢? were determined from (3.2)
for each of the two vectors 8 in (3.3). Since our endpoint
criteria sEB (A.10) and spE (A.11) are unaffected by
scale changes 8 — ¢ and ¢ — co, we could equally well
have set ¢ arbitrarily and computed scalar mult1phers
from (3.2) for the g vectors in (3.3).

In Experiment 2, the factors are 16 at two levels, rRoT
at four levels, coL at two levels, mcL at two levels, cEN
at four levels, and BET at four levels. The actual design is
a quarter replicate of the 2 X 43 complete design. The
preliminary eigenvalue levels of Er¢ in Experiment 2
were changed to

T = diag (30, 30, 30, 20, 20, 20)

1)
= diag (64, 16,4, 2,1, .5) . ®.1)

For roT we created four new random orthogonal matrices
G by the same algorithm used in Experiment 1. The E1c
and RrorT levels were crossed as in Experiment 1, yielding
now 2 X 4 = 8 correlation matrices X7X, which were
further crossed with the factors coL and mcL to obtain
8 X 2 X 2 =32 correlation matrices X7X altogether.
coL means the presence or absence of a deliberately in-
troduced correlation .95 between X; and X, while mcL
means the presence or absence of a deliberately introduced
correlation .92 between X; — X, and X, thus providing
a partially hidden substantial correlation among the first
three independent variables X,, X, and X; The coL
and McL algorithms are described in Appendix C.

Given X7X, the procedure for fixing B and o? is the

same-as in Experiment 1, changing (3.2) to

- BT(XTX)B/0? = 100
= 500
— 10 (3.2)’
= 50
and changing (3.3) to
G = (17 1’ 17 17 1’ 1)
= (32; 16’ 8, 8: 8) 8) ’
- (1,1,1,0,0,0) @8

It

(32, 16,8, 0,0, 0) .

The experimental data sets were created and analyzed
using the APL computer language as implemented under
the CP-67 system at 18m Cambridge Scientific Center.
An advantage of APL is that a large number of small but
mathematically complex program units can be written
and put together with relative ease. A disadvantage is
that a large number of routine repetitions of the pro-
grams, as would be required for standard large sample
Monte Carlo, becomes prohibitively expensive due to the
interpretive nature of ApL. The programs described in
[207] make it feasible to reproduce much of the data
generation and analysis or to replicate the expenments if
80 desired.

4. NUMERICAL RESULTS
4.1 Overall Comparisons of 57 Methods

Many different analyses were carried out for purposes
of comparing the properties of the various estimators, and
relating them to the design factors. Overall comparisons
of the methods under study are provided in Table 1,
which shows the mean values and medians of the two
criteria, sEB and spPE, together with their ranks on the 57
methods, for each of the experiments. The methods are
arranged so as to put together different versions of the
same method, as indicated by the extra space separating
the ten different groups.

Examination of Table 1 leads to a number of interesting
observations.

1. Ordinary regression (oREG) is inferior to all nontrivial
methods of estimation with respect to observed ses averaged
over each series of data sets. In the first experiment, it is
even worse than the trivial method of estimating all co-
efficients to be equal to zero.

2. The reductions in SEB, on average over the observed data
sets, achieved by some of the methods under study are as
large as 90 percent.

3. Average reductions in sPE are at most 20-30 percent, and
ordinary least squares performs better than a number of its
competitors on this criterion. These results corroborate our
observation in Section 2.3 to the effect that the advantage
of RIDGE over STEIN would be less on sPE than on sEB, since
SPE weights individual components by A..

4. The methods which produced the best overall results were
not the customary ones such as ordinary least squares,
selection of variables, or regression on principal components,
but rather versions of RIDGE and REgr. In particular, it is
interesting to note that RIDGM was best with respect to mean
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1. Means and Ranks and Medians and

Ranks of 57 Methods 1. Continued
Experiment 1 Experiment 2 Experiment 1 Experiment 2
Méthod Mean Rank Mean Rank Method Mean Rank Mean Rank
SEB SPE  SEB SPE SEB SPE SEB SPE SEB  SPE SEB SPE SEB  SPE SEB SPE
a. Means and ranks b. Medians and ranks -

OREG 542.86 570 57 27 78.37 626 56 21 OREG 178.83 557 57 I 25.94 505 46 24
ZERO 143.92 150.00 35 57 13419 16500 57 57 ZERO 128.87 15000 54 57 5542 75.00 57 &7

FSLA 93.59 826 29 47 6842 1637 52 55 FSLA 62.15 528 50 27 31.11 823 54 b2
CFSL 84.35 812 27 46 6163 1038 39 50 CFSL 39.55 6.01 30 40 30.36 786 51 49
1CFSL 93.13 456 28 10 51.53 679 22 29 1CFSL 33.23 302 24 3 23.24 519 39. 26
2CFSL 466.92 482 52 17 63.42 6.04 42 16 2CFSL 58.77. 436 49 19 20.22 484 30 16

OFsL 78.61 478 22 16 56.27 769 30 38 OFsL 40.06 353 31 10 24.12 586 40 36
1FSL 215.22 489 36 20 60.09 6.08 3 17 1FSL 56.71 479 44 25 19.47 483 27 15
FSLN 80.03 686 25 39 52.46 888 23 43 FSLN 45.09 6.12 36 42 26.80 776 47 47
1FSLN 479.95 493 53 21 66.02 8.03 48 14 1FSLN 49.95 472 41 22 20.31 487 31 17
BSLA 76.22 596 19 29 64.34 994 43 48 BSLA 25.20 486 8 26 33.76 774 56 46
CBSL 78.43 797 21 45 67.83 1137 51 &3 CBSL 31.11 627 18 46 33.34 878 55 53

1cBsL 273.01 506 39 24 65.58 733 46 34 1cBsL 27.97 331 14 . 7 28.51 590 49 35
2cBSL 499.55 487 56 19 60.84 633 37 24 2cBsL 37.29 423 27 17 25.32 532 45 29

OBsL 78.88 477 23 13 58.39 723 32 33 OBsL 31.87 392 21 13 28.99 562 50 33
1BSL 461.50 516 51 26 71.31 623 53 20 1BSL 54.93 543 43 28 25.30 490 43 20
BSLN 77.50 738 20 41 60.86 982 38 47 BSLN 27.15 669 13 47 31.11 791 53 51

1BSLN 421.26 497 49 23 7420 636 54 25 1BSLN 37.29 476 28 23 25.31 543 44 30

cMcP 78.91 7556 24 43 65.17 1052 45 52 CMCP 31.11 6.01 19 4 30.36 791 52 50
icmcp  272.53 483 38 18 66.50 7.02 49 AN icmcp 46.40 331 37 8 24.39 543 41 31
2cMmcP  493.32 476 55 12 64.48 636 44 26 2cMcepP 49.07 413 39 16 24.96 529 42 28

Omcp 81.47 6.74 26 37 56.46 918 31 44 | Omce 31.11 597 20 39 27.70 778 48 48
1McP 416.98 478 48 15 75.89 6.17 55 19 1McP 39.53 435 29 18 20.31 526 32 27
CPRI 7375 1146 18 53 28.12 8.58 7 42 CPRI 5782 1163 47 54 13.05 704 10 42
1cPRI 66.10 682 16 38 27.72 602 6 13 1CPRI 43.36 546 35 30 9.41 503 4 22
2CPRI 131.44 6.01 33 30 51.09 594 21 12 2CPRI 47.27 569 38 35 12.93 502 8 21
PRIB 100.25 851 30 49 39.36 713 11 32 PRIB 53.40 6.99 42 49 11.24 658 6 37
1PRIB 355.37 6.11 43 31 61.92 6.15 40 18 1PRIB 49.37 557 40 34 15.00 514 14 25
PRIF 102.37 921 31 52 27.34 750 5 37 PRIF 57.75 8.62 46 52 11.92 672 7 39
1PRIF 363.24 635 44 .33 556.57 6.03 20 15 1PRIF 58.36 571 48 36 12.93 503 9 23-
STEINM  482.16 594 54 28 63.40 584 41 9 STEINM  161.79 550 56 31 19.42 468 26 11
CSTEI 21956 2417 37 56 4026 1641 12 56 CSTE! 91.07 2455 52 56 1836 1499 21 56

1CSTEI 32561 1176 40 54 46.86 854 19 41 1CSTEI 11348 1139 53 53 15.87 751 17 43
2csTEl  3B86.46 830 46 48 53.94 6.55 27 28 2CSTE! 129.22 723 55 50 17.60 551 19 32

SRIDG 65.02 657 15 36 25.76 5.51 4 3 SRIDG 42.75 625 34 45 8.16 454 3 10
RIDGM 45.16 49 1 22 1759 - 498 2 1 RIDGM 31.87 393 22 14 7.43 411 1 1
CRIDG 69.51 2117 17 558 29.29 1448 8 54 CRIDG 5769 2072 45 55 16.98 1194 18 55
1CRIDG 53.85 9.00 6 51 18.71 684 3 30 1CRIDG 42,59 829 33 51 10.13 5.71 5 34
2CRIDG 52.25 613 4 32 17.48 525 1 2 2CRIDG 36.72 554 26 32 8.08 453 2 9

CREGF 57.67 754 11 42 52.97 973 24 46 CREGF 25.43 6.18 9 43 22.80 767 36 45
1CREGF 60.76 401 13 2 46.53 640 18 27 ' 1CREGF 21.21 309 3 4 18.58 445 23 8
2CREGF  137.73 390 34 1 38.60 554 10 4 2CREGF 24.62 327 7 6 15.47 411 16 2
OREGF 56.76 650 9 35 44 86 808 16 40 OREGF 25.43 587 10 38 19.99 703 29 4
1REGF 355.31 439 42 8 58.76 562 33 7 1REGF 28.68 447 15 20 14.38 435 11 7
FREGF 49.32 415 2 6 42.89 745 14 35 FREGF 18.88 277 1 1 18.59 489 24 19
1FREGF  379.35 475 45 11 65.87 592 47 M1 1FREGF 32.59 466 23 21 19.09 482 25 14

CDRGF 56.97 756 10 44 5332 L 966 26 45 CDRGF 25.49 621 11 44 23.08 761 37 44
1cbRGF  126.37 412 32 4 48.88 630 20 22 1CDRGF 23.21 317 5 5 19.92 435 28 6
2CDRGF  327.46 4.02 41 3 43.95 555 15 5 2coRGgF . 35.67 333 25 9 15.35 418 15 3
ODRGF 56.52 650 8 34 45.13 792 17 39 ° ODRGF 25.49 578 12 37 21.07 6.85 33 40
1DRGF 416.96 442 47 9 58.92 562 34 6 1DRGF 42.03 405 32 15 14.95 428 13 4
FDRGF 52.20 414 3 5 54.80 748 28 36 FDRGF 19.77 278 2 2 17.65 479 20 12
1FDRGF  457.61 478 50 14 67.59 590 50 10 1FDRGF 77.45 476 51 24 21.11 481 34 13

RREG1 59.00 696 12 40 60.53 1049 36 51 - RREGI 29.51 544 16 29 21.56 659 35 38
CRREG 62.15 897 14 50 5318 1022 25 49 CRREG 30.69 694 17 48 2317 924 38 H4
1cRREG  52.61 5.11 5 25 42.64 631 13 23 1CRREG 23.57 390 6 12 18.53 487 22 18
2CRREG  54.30 435 7 7 38.23 573 9 8 2CRREG 22.30 357 4 11 14.91 429 12 5
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SEB in the first experiment and second best in the second. In
the latter instance, another version of RIDGE, namely 2cripG
was slightly better than RmGM. On the basis of median,
rather than mean values, FREGF was best on both criteria in
the first experiment, while RIDGM was the number one per-
former in the second experiment. Comparisons of RIDGM
against OrREG indicated improvements in average sEB of
approximately 92 and 78 percent in the two experiments.
RIDGM was also the best method on average spE in Experiment,
2, providing a reduction of 20 percent. In the first experiment
it ranked only 22nd on mean spE although it still provided
an average reduction of about 14 percent.

5. The data do not indicate any consistent patterns of behavior
with respect to variations in the confidence levels employed
in the confidence contour procedures, or in the significance
levels used in the various selection-type methods. In most
instances, changes in level produced opposite effects on the
two criteria. For example, referring to Table 1, for the PRI
and STEIN methods, variations from C to 1C to 2C were
generally accompanied by improved spe, but degraded ses.
In other cases, such as BsL, REGF, and DRGF, the directions
of change on seB were opposite in the two experiments.
Similar observations could be made with respect to choice
of level for the various selection methods. Since the pér-
formance of these techniques is generally sensitive to the
particular choice of level, their use can be risky.

4.2 A Closer Look at Selected Methods

In this section, we focus our attention on six particular
methods, with the objective of learning more about their
detailed behavior patterns. The selected methods are
representative of the total spectrum of 57 methods in that
they include a member of each major class of pullback
procedures, as follows:

Type of pullback Selected method
None OREG
Selection of variables OFSL
Principal components PRIF
STEIN STEINM
RIDGE RIDGM
REGF FREGF

The specific choice of a member within each class was

based on performance within the group, and similarity

to procedures used in current practice. For example,

RIDGM was chosen to represent the RIDGE class of estima-.

tors, because it appeared to be the best performer within
that class. However, PRIF was chosen to represent the
principal component class of estimators, even though
1cpRI seemed to be a better performer, because the type
of selection procedure used by PrIF is more commonly
used in practice. The 0FsL, PRIF, and FREGF methods are
comparable to one another in the sense that they all
employ forward selection procedures, and use stopping
rules based on significance at the .05 level.

The reason for simulating the performance of these
methods is, of course, that desired distributions of estima-
tion error can usually not be calculated analytically. In
one instance, however, that of RIDGE regression, we can
calculate stochastic lower bounds for frequentist expecta-
tions of our two criteria. It is of interest then to determine

how closely RIDGM approximates these lower bounds, and

to compare the performance of the other methods with
these bounds as well. A description of the bounds follows.

In terms of the prineipal components transformation C
defined in Appendix A, minimization of sEB (or SPE).in
the direction of the ith principal axis, for estimators of
the form f;a., results in

fi=N/N+ ki),

where k; = {(¢/a:)?. One cannot use this estimator in
practice, because the k; are unknown. However, we can
calculate the k; for every sample in our simulation study,
since we know the values of ¢ and e. The estimates based
on {4.1) are referred to below as opT.

oPT is similar in form to RIDGE except that there is
now a separate factor k. along each principal axis. orT
provides a stochastic lower bound for RIDGE methods be-
cause it has additional degrees of freedom and also uses
true, rather than estimated, values of the adjustment
factors. The frequentist expectations of our two criteria
for opr are given by

EopT(SEB) = i fi/)\l'
1

(4.1)

(4.2)
and

Eorn(srs) = 3 fi 4.3)
1

A. Cumulative Distributions of Eopr(SPE)/ Eorgc (SEB)
by Noncentrality Level, Experiment 1

Ratio

9O
200

100

I
=5 10 15
ORDERED OBSERVATIONS



Simulation of Alternatives to Least Squares

whereas the corresponding expectations for ordinary
regressions are

E()REG(SEB) = i 1/)\.‘ (44)

and

Eorec(SPE) = p . (4.5)

In evaluating the performance of different regression
methods, we can use (4.1)-(4.5) in two ways to provide
stochastic lower bound type comparisons. First, if we
pretended that we knew the values of the f;, we could
apply these factors to the sample data, and evaluate the
actual performance of opr on such data. Second, the
ratios of the corresponding expected values, (4.2)/(4.4)
and (4.3)/(4.5), provide information as to the expected
gains in sEB and sPE which could be realized by using the
optimal pull-back procedure. i

The shrinking factor f; can be interpreted in terms of
the noncentrality parameter, A% along the #th principal
axis, as

f,' = A.'z/(l + A.'z) .
Thus, when the noncentrality parameter is large, the

shrinking factor is close to one, showing that least
squares is asymptotically efficient.

(4.6)

B. Cumulative Distributions of Eopr(SPE)/ Eoreg (SEB)
by Noncentrality Level, Experiment 1

Ratio
9 200

100

0 | 1 1
5 10 15
ORDERED OBSERVATIONS

85

C. Cumulative Distributions of Egpr(SEB)/Eorgg (SEB)
by Noncentrality Level, Experiment 2
Ratio

500
9

50

0 1 I | ! !
5 10 15 20 25 30

ORDERED OBSERVATIONS

One view of the particular parameter sets chosen for
our two series of data sets is given in Figures A—D, which
present cumulative sample distributions of the ratio of
Eopr to Eonec for each of the criteria, by noncentrality
level. It is readily apparent from these graphs that op-
portunities for large improvements via shrinking are
greatest for small noncentralities. This property is borne
out in our observed data, as illustrated in Table 2 which
shows for the various methods the ratios of observed
mean criterion values (sEB and SPE) to corresponding
least-squares values, separately by noncentrality level.
Generally, the largest relative gains have been achieved
at the lowest noncentralities. This is particularly evident
for sEB, which has larger expected gains that does sEr.

Further insight into the relative performance proper-
ties of the selected estimators is provided by Figures E-H,
which show the cumulative sample distributions of the
ratios of the observed values of the criteria for each of
the methods, to their corresponding least-squares ob-
served values. Examination of the sEB graphs (Figures
E and G) shows that sTEINM is the most conservative
procedure of those being compared, in that it most
closely approximates oREG. It provides improved per-
formance in most cases (80 percent of the cases for
Experiment 1, and 90 percent for Experiment 2), al-
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D. Cumulative Distributions of Egpy(SPE)/ Egreg (SPE)
by Noncentrality Level, Experiment 2

_ Ratio

9

ORDERED OBSERVATIONS
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10 15 20 25 30

2. Ratios of Average Criteria Values for Individual
Methods to Those for Least Squares,
by Noncentrality Level

Experiment 1 Ekperiment 2
Method NCP
100 200 10 50 100 500
ses
OFsL .07 46 .22 A9 1.03 94
PRIF 14 .38 13 31 39 .46
STEINM .88 .92 .38 .78 .90 97
RIDGM .05 25 .09 .21 .27 27
FREGF .04 31 12 37 .65 .84
EOPT .03 .04 .03 .09 12 .20
OPT .03 21 .06 .09 a7 19
SPE
OFsL - .65 1.06 .88 1.37 1.43 1.17
PRIF 1.70 1.54 1.14 1.26 113 1.22
STEINM 1.02 1.06 75 1.03 .93 .98
RIDGM .80 .94 .61 .88 .78 .88
FREGF 57 91 .73 1.50 1.30 1.10
EOPT .59 .66 34 .53 .61 72
OPT .54 77 .35 .53 .61 .7

though the improvements are not as large on the average
as those produced by the other methods. It also is less
risky than the others in the sense that it seldom produces
large degradations with respect to least squares.

E. Cumulative Dijstributions of SEB Ratios,
Experiment 1

Ratio
lg — FREGF
B RIDGM
s * JOFSL:
4}
3L OoPT
PRIF—
2
STEINM -
OREG

1 | 1
5 10 15 20 25 30
ORDERED OBSERVATIONS

The rrEGF procedure appears best on both criteria in
Experiment 1, while ripGMm is the clear winner in Experi-
ment 2. These conclusions are borne out also by Table 1,
which shows that rrEGr and rRipGM have the smallest
median values on the two criteria for Experiments 1 and
2, respectively. The apparent reason for the reversal in
performance from Experiment 1 to 2 is that FREGF is
affected by the distribution of beta values, whereas
RIDGM is not. In general, the performance of FREGF im-
proves as the distribution of the beta values becomes more
skewed, and as the degree of truncation (i.e., number of
zero or near-zero values) increases. In Experiment 1, the
mean SEB for RIDGM was approximately the same (46.2
and 44.1) at both levels of BETA, while the corresponding
values for FREGF decreased from 75.1 to 23.5, for BETO
and BETI, respectively. Thus, the sharply improved per-
formance of FREGF at BET1, corresponding to the extreme
distribution (64, 16, 4, 1, .25, .0625), appears to be re-
sponsible for the better overall performance of FREGF in
the first experiment.
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F. Cumulative Distributions of SPE Ratios,
Experiment 1

Ratio
10—
8-
- PRIF
6 -
4 -
3
FREGF
OFSL
2+ STEINM
RIDGM
JOPT
I OREG
-STEINM Eopr
8

1 | L | ! ! [
5 10 15 20 25 30
ORDERED OBSERVATIONS

Comparisons of the distributions of sPE ratios (Figures
F and H) yield similar results. Again, FREGF appears to
be the best choice in the first experiment, while rRiDGM
looks best in the second.

4.3 Effects of Design Factors

In this section we assess further how the design factors
affect the performance of the various methods. Log-
arithmie transformations were carried out on both sEB
and sPE values because they have highly skewed chi-
square distributions. Normal probability plots of the log-
transformed sample values indicated reasonably normal
behavior.

Initial analyses treated the data simply by computing
analyses of variance and looking for significant main
effects and first-order interactions. A typical analysis of
this type for log sEB, Experiment 2, is presented in
Table 3 for orEG, OFSL, STEINM, RIDGM, and FREGF. It
shows F values for main effects and first-order interac-
tions, together with signs of the effects, for all effects
which are significant at the .05 level. The error sums of
squares are based on pooling of second- and higher-order
interactions. We note that there are relatively few signifi-
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cant interactions, and that they generally have much
smaller F values than the significant main effects. In the
case of OREG, there are no significant interactions at all.
For most methods, eigenvalue structure, multicol-
linearity, and noncentrality are significant. Noncentrality
is a significant factor in all methods except for orEG, and
performance of each of these methods degrades, as pre-
viously noted in Section 4.2, as the degree of noncentrality
increases.

The largest effect in orEG is the eigenvalue structure, as
might be expected from (4.4). Collinearity and multicol-
linearity also have significant effects in orEg, displaying
approximately the same F values and directions. The
effects of rotation are not significant, which provides
some reassurance as to the validity of the experimental
results, since the random rotations can be regarded as
replications in the case of ordinary regression.

The effects of the regression coefficient structure are
significant only for those methods which select variables
(i.e., oFrsL and FREGF). The coefficient structure has no
effect on oREG, a result which should be expected since
Eorze(sEB) does not depend on the coefficient structure.
Nor is it a significant factor in the smoother pull-back
procedures RIDGM and STEINM.

A closer examination of the data is provided by Table

G. Cumulative Distributions of SEB Ratios,
Experiment 2
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H. Cumulative Distributions of SPE Ratios,
Experiment 2
Ratio
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4 which presents the mean differences in log sEB and
log sPE between each of five methods and either orgg,
RIDGM, and FREGF. The results differ somewhat in the two
experiments, but the overall picture is unchanged. Least-
squares estimation (SEB) is strongly improved by FREGF,
1cPRI, and RIpGM in both experiments, and outstanding

3. F Values for .05 Level Significant Effects,
Together with Signs of Effects, for
Log SEB, Experiment 2

OREG STEINM  RIDGM FREGF OFsL
EIG 57.42 65.17 40.14 24 94 28.85
MCL 16.81 15.91 6.00 10.69 13.90
coL 15.43 13.68
CEN1 12.92 28.80 27.16 13.74
CEN2 —-8.00 —3236 —-59.46 -—42.19
Beta shape -5.16
Beta truncation —15.45
EIG X COL -5.41
EIG X CEN2 -B.98 -7.65
MCL X CEN1 10.68
MCL X CEN2 -6.61 —-13.97
COL X CEN2 -6.71
CEN1 X CEN2 8.29 6.16 19.94 23.06
CEN2 X beta trunc —4.28 —7.64
MCL X ROT1 453

gains over least-squares prediction (SPE) are either ob-
served for FREGF (in Experiment 1) or for RipgM (in
Experiment 2). From the paired comparisons with RipGM
it can be seen that FREGF is its only serious competitor.
STEINM gives significantly larger estimation and predic-
tion errors in both experiments, and generally, 0rsL and
1cPRI give worse results as well. The classical selection-of-
variables method 0FsL turns out to be clearly inferior to
the Bayes approach to variable selection : the significantly
larger estimation errors of OFsL relative to FREGF in both
experiments are not counterbalanced by smaller predie-
tion errors.

4. Mean Differences in Logs SEB and SPE

Standard Experi- Compared methods

method ment

OREG OFSL FREGF 1CPRI RIDGM STEINM
ses
OREG 1 —1.14> —1.76> —0.99° —-1.32® —0.05
2 —-0.14 —-0.49® -0.84> —1.12¢ —0.22°
RIDGM 1 132  0.12 -0.44 0.33 1.26°
2 1.12b 0.98®* 0.63°* 0.27° 0.85°
FREGF 1 1.76® 0.61° 0.77 0.44 1.70°
2 0.49° 0.36° —-0.35" -0.63" 0.23
SPE
OREG 1 -0.412 —-066® 010 -0.15 0.06
2 -0.04 -0.15 -0.10 -0.29 -0.08
RIDGM 1 0.15 -0.27 -051" 0.25% 0.21®
2 0.29° 0.25° 0.14 0.19 0.20°
FREGF 1 0.66® 0.25° 0.76® 051 0.72°
2 0.15 0.11 0.05 -0.14 0.06

" Indicates significance at the 0.05 level.
b Indicates significance at the 0.01 level.

The next level of analysis attempted to introduce the
eigenvalue and noncentrality structures into the regres-
sion models in such a way as to reflect the ways in which
they enter the expressions for the expected values of our
two criteria, as given by (4.2)-(4.5). Specifically, using
SEB as an example, we attempt to partition the
total sums of squares of log sEB into components due
to log E()PT(SEB), (log Eorrc (SEB) — log E()PT(SEB)),
(log sEBorec — log Eorec(SEB)), and components due to
the various design factors.

The results of these analyses are presented in Table 5,
which shows F values corresponding to terms in the
models together with the squared multiple correlation
coefficients. The rows of the tables are ordered according
to the sequence of introduction of terms into the regres-
sion models. In all cases, error sums of squares are based
on pooled interactions of all orders. In all of these
analyses, the salient feature is that most of the explained
variation is associated with the partitioning of the co-
variate (i.e., log sEBorEG or log SPEorre) into its indicated
components. Thus, after introducing these terms, which
represent specific formulations of the ways in which the
eigenvalue and noncentrality structures affect the re-
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5. F Values for Regression Models
Regression Experiment 1 Experiment 2
model OPT PRIF  STEINM RIDGM FREGF OFSL OPT PRIF STEINM  RIDGM  FREGF  OFSL
a. Log SEB
Rotations 4.68° .81 .93 9.24b 2.51 2.63 .26 1.05 5.10° 84 .76 .16
Log (3 fi/A\y) 64.43° 16.43° 19.13* 60.06° 283 5.292 290.89* 227.11° 591.53* 173.73* 105.24® 76.32°
Log (S 1/A)M(S 1) 03 18 3417.99® 160  570% 21.16° 1.20 193  762.22> 4472 393 14.18°
Log (SEB greg/31/\) 74 3.65 2329.73° 4.21 3.45 4732 8.38* 11,22 1180.22° 46.04° 1431 3.922
Log NcP .00 2.07 .36 3.05 .07 19 .04 1.77 43.91° 4,832 11.20° 4.70°
EIG .06 ©.05 .01 46 .00 .66 1.33 1.30 .82 .85 .90 2.09
MCL 2.92 .59 .02 3.31 1.20 .08
coL .82 2.15 .o .78 3.20 3.48 13 .39 .01 .00 .25 .02
Beta level 11 3.48 .35 1.08 11.54b 12.80°
Beta shape 1.85 .05 31 .02 4382 2.06
Beta trunc .18 .33 6.41% 2.76 330 14.15°
R 75 56 100 78 56 .69 72 68 96 67 76 50
b. Log SPE
Rotations 8.51® 4.63= 55 .95 1.12 .05 91 42 2.05 1.49 .05 .23
Log SPE pREG 2.74 63.70° .06 .18 1.03 .35 120.99* 22.77° 257.80* 136.61° 56.07° 32.52°
Log % f; 76.07° .03 .98 1.81 22.56° 49.80° 70.26° 3.00 8.93* 20.21° 14.72° 13.48°
Log NcpP 6.962 .03 .98 33 1.08 1.21 .03 .87 4.012 .66 1.04 1.56
EIG .64 12 .01 .07 .33 43 .56 .29 1.25 A7 1.33 1.51
MCL 3.01 2.24 7.442 5.072 .00 .30
coL .03 15 27 87 3.81 7.69° .00 .10 .00 1.53 1.54 1.59
Beta level 2.49 15 .00 .03 .89 .07
Beta shape .58 .81 A5 A7 19.37° 15.31°
Beta trunc .05 1.18 .46 2.70 1.90 10.62°
R%. - .80 74 A1 15 .56 71 .63 .22 71 .60 45 40

# Indicates significance at the 0.05 level.
" Indicates significance at the 0.01 feval.

spective criteria, the residual effects of the original design
factors eigenvalue structure, collinearity, and multicol-
linearity, usually become insignificant. In most cases,
noncentrality level also disappears as a significant factor,
although it has a sizeable effect on log sEB for the sTEINM
and FREGF methods. The effects of beta structure are
highly significant only for FREGF and 0FsL, which select
variables corresponding to significant beta values.

5. CONCLUDING REMARKS

We have illustrated the large improvements in sEB
and spE which are theoretically known to be possible
through the substitution of cither smooth or discon-
tinuous pull-back procedures for ordinary least squares.
The potential relative gains in accuracy for individual
estimated regression coefficients are seen to be typically
much larger than those for predicted Y values. The
expected gains in SEB and sPE are fairly small for sTEINM,
while for ripem and prir they are larger and exhibit
dependencies on design variables similar to those of the
artificial method opr, i.e., dependencies mainly on eigen-
values and noncentrality factors. Methods such as 0FsL
or FREGF, which select variables, are highly dependent
additionally on the pattern of true regression coefficients.
The relatively conservative sTEINM procedure has one
advantage, in that it less often does worse than orEeG.
The relative accuracy of traditional selection of variables
methods based on significance testing behaves erratically
in relation to significance levels adopted. While these
results could have been predicted in a general way from

either Bayesian or frequentist theoretical considerations,
we believe numerical depictions make the results both
concrete and vivid. ‘

We would like to see the methodology of the study
moved closer to helping the statistician with a specific
body of data under analysis. For example, as remarked
in Section 1, we could perform similar studies with the
design matrix X fixed at the values of a particular data set.
Another device would be to apply regression methods to
n — 1 rows of (Y, X) and to evaluate predictions for the
complementary row, and repeat with different selection
of rows, much in the spirit of jackknifing.

Yet another, and more Bayesian way, would be to ask
the statistician to specify & or 10 prior distributions
covering a plausible range, and then to compare the
closeness of various alternative regression procedures to
the 5 or 10 posterior means. The Bayesian view offers
some clarification of the real problem posed by a given
set of data: if the correct analysis depends critically on
the model and prior adopted, over some reasonable range,
then the statistician should not expect any favorite pro-
cedure taken from his kit of tools to be automatically
applicable. Our study suggests that conflicts will often
appear among REGF, RIDGE, and STEIN estimates which
should cause statisticians to reexamine both their data
and their prior understanding for clues.

APPENDIX A
The normal linear model is written in the form

Y=Xg+e (A1)
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where Y is an n X 1 vector of values on the response or dependent
variable, X is an n X p matrix giving corresponding values on p
independent variables, and e is an n X 1 vector of independent
N (0, ¢?) disturbances. The least-squares estimator b of 8 is expressible
in terms of Y and X according to

b = (XTX)~1(XTY) , (A2)
which together with the residual mean square
§? = (Y - Xb)T(Y — Xb)/(n — p) , (A.3)

defines sufficient statistics for the parameters B and o2 of (A.1). We
can summarize the sampling distribution aspects of the model by
asserting that b and (n — p)s? are independently distributed as
N (B, o*(XTX)™ 1) and o?x,_,?, given fixed nonsingular XTX.

The ripGE and PRI methods are closely related to a principal
components analysis of the p independent variables. Accordingly, it
is convenient to have notation for replacing the given independent
variables X by p linear combinations

X* = XCT (A.4)
where C is chosen such that
X*TX* = C(XTX)CT = diag (A, Ag, ..., Ap) (A.5)
and
CCT=1. (A.6)
The model (A.1) is correspondingly reexpressed as
Y=X*+e (A7)
where
a=C3. (A.8)
The least-squares estimates
a=Cb (A.9)

of @ have a simple sampling distribution. Specifically, the com-
ponents a; are independently distributed with N (as;, o?/A;) distri-
butionfori=1,2, ..., p.

The principal components transformation C is not invariant in
general under linear transformations of the p independent variables,
and in particular is not invariant under linear changes of scale in
each variable separately. In our work we have rescaled the variables
so that the diagonal elements of XTX are all unity, so that our
principal components are, apart from a single scale factor, the
principal components of the correlation matrix among the inde-
pendent variables. This convention is an essential part of the def-
inition of the ripGE and pr1 methods which we study.

Two criteria are used throughout our study to measure the devi-

ation of an estimated vector § from its true value §, namely

sEB = (§ — B)T(§ — 8)/o? (A.10)
and

sPE = (§ — B)TXTX(§ ~ 6)/a. (A.11)

sEB abbreviates sum of errors of betas, while sPE abbreviates sum
of prediction errors. The connection between spe and prediction
follows. Suppose that a new set of responses Y* is drawn from the
linear model Y* = X8 + e* using the same design matrix X appear-
ing in the original data set which yielded 4, and using the same 8,
but using new e* independent of the original e. If X§ is used to predict
Y*, then the sum of squares of prediction errors averaged over e* for
fixed § is o + o%5PE. .

The formulas expressing sk and spE in terms of principal com-
ponents are

»
SEB = Y (& — ai)?/e® (A.12)

=1

and

SPE = {: N(& — ai)?/o? .

=1

(A.13)

APPENDIX B

Further details of the rReGr methods are sketched here. In par-
ticular, we derive the posterior weights w (I) used in (2.11), and we
define the stopping criteria F; and F,. The notation established in
Section 2.4 represents by I a subset of r of the p independent vari-
ables, and by 4, the class of all such subsets. Given that only the
components §(I) of 8 are nonzero, (A.1) can be written in the form

Y =X(NgW) +e (B.1)

where X(/) and 3(I) denote the parts of X and 8 corresponding to
1. The obvious generalizations of (A.2) and (A.3) define b(Z) and
s(I)2,

For a given value of r, the rzGr procedures assume that the (¥)
members of 4, are a priori equally likely candidates to specify the r
nonzero components of 3. Given any particular I € 4, it remains to
specify a prior density for (I) and ¢®. The reGF and DRGF sub-
families are specified by flat prior density elements of the form
K (1)dg (1) where

K(l)=1 and K(I) = [det X()TXU)) ], (B.2)

respectively. The alternative forms of K(I) arise from considering
B(I) to have a multivariate normal distribution with alternative
covariance matrices CI and C(X(I)TX(I))™!, respectively, and then
letting ' — . We also use the common form of flat gamma prior
density for A = 1/¢?, namely density element ha/2~1dh where a = 0,
1, 2 are typical choices. Thus the joint prior density element for 7,
8(I) and & is

[K(DdgI)] X [he"4dR] , (B.3)

where a remains to be chosen.

The likelihood of I, 3(I), and h from (B.1) is proportional to

k2 exp (— (h/2) (@1 + Q2)) (B.4)
where
Q: = (b(I) — sINTX(ITXL) () — BUI) (B.5)
and
Qi= (n —r)s(I)?. (B.6)

Multiplying (B.3) and (B.4) and integrating out §(I) and &, we find
that the posterior probabilities are proportional to

w*(I) = K(D)[det(X(DTX () Js () ra—mn (B.7)
whence the actual posterior weights used in (2.11) are
wl) =w*)/ T W) . (B.8)
Jc gr
The choices .
a=r and a=r—1 (B.9)

were associzted with the choices (B.2) for K(I) to define REGF and
DRGF, respectively.

The selection criterion F; used by FREGF, FDRGF, 1FREGF, and
1FDRGF is an analog of a 2 log-likelihood ratio statistic. Specifi-
cally, the statistic used to judge whether r should be increased from
rtor+1is
- Fy = Lr+l — L, (B.IO)
where

Le=— Y w(l)log ((n — r)s(l)?) . (B.11)

Icgr

We treated F; &s nominally an F on (1, =) degrees of freedom.
The F; criterion used by OREGF, ODRGF, 1REGF, and IDRGF is also
defined by posterior averaging. Specifically,

2 w(DF(I)
Icgr

F; = (B.12)

where F3(I) is defined by applying (2.11) to the fitted subset I.
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APPENDIX C

The devices used for introducing prespecified collinearity and
multicollinearity into a given correlation matrix R consist of repeated
applications of transformations of the type

R — CRCT (C.1)

where C is square and nonsingular. C may be naturally interpreted
as a mapping from one basis of the linear space of six independent
variables to another basis, where R and CRCT are the initial and
final covariance matrices. For example, in Experiment 1, to introduce
.99 into the (1, 2) position of R we first used & C which replaced the
standardized variables by their sum and difference, so that (C.1)
took the form )

1 ra ...
re 1 L]

We then rescaled the new variables by [1.99/(1 + ri3) ]t and
[.01/(1 — r13)J* so that the right side of (C.2) achieved a similar
form with 7, replaced by .99. Finally, we reversed the transformation
used in (C.2) to get the desired result. In Experiment 2, the first
step (C.2) was the same. We then rescaled the difference variable
to have unit variance, and in order to introduce a correlation .92
between this variable and the third variable we applied the same
technique as in Experiment 1. Finally, we unstandardized the
difference variable to get back the form on the right side of (C.2)
and we repeated the technique of Experiment 1 to introduce.corre-
lation .95 between the first two variables.

[Received May 1974. Revised September 1976.]
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In these comments, we shall be concerned with just
two variants of ordinary regression, RIDGE and STEIN.
Our interest is focused in this way because we have given
considerable thought to estimators of these types in our
own research over recent years on empirical Bayes and
Stein-type estimation, because more analytical power can
be brought to bear on these methods than suggested in
the paper, and because for the loss functions used, the
performance of these estimators depends on the experi-
mental inputs only through the eigenvalues of the matrix
X'X. This last reason simplifies matters greatly for
understanding RIDGE and STEIN, although it does not
apply to most of the other §7 varieties. For lack of space,
and because we haven’t studied them carefully, we will
not discuss the confidence contour constraint variants
of Section 2.4.5 of rRiDGE and STEIN.

This leaves STEINM, RIDGM, and SRIDG as the only three
rules under consideration. When the eigenvalues {A;} of
X'’X are equal, sTEINM and RipGM reduce to the same
rule, but sripGg behaves very badly, being highly non-
minimax. By making use of arguments in [3], it easily
can be shown to be substantially and uniformly improved
upon by the James-Stein rule. We also expecet sriDG to
perform poorly when the eigenvalues are unequal, which
happened in the simulation. Since sripG is so complicated
in general, and has not been recommended elsewhere, we
shall take rRIDGM to be the only interesting version of
RIDGE considered in the study.

Certainly the most dramatic conclusion of the study is
that a version of the ridge method, in the form of RIpG,
is the best method used in the study and dominates a
Stein-type method, in the form of steEmnm. While we
agree with this conclusion, and have made similar state-
ments in our own work [2, 3], we believe different
language should be uscd; language based on an under-
standing of why this is so. In particular, we see justifi-
cation for RIDGM arising out of the empirical Bayes
literature in combination with the implicit assumptions
of this experiment, and not from the ridge-trace graphical
technique used for estimation of regression coefficients.

The reader should note that sTEINM is not the James-
Stein rule (which we shall term sstEIN) [4], and over-
shrinks JsTEIN by a factor of [(n — p 4+ 2)/(n — p)Ip/
(p — 2), or 12/7 in this case. This sacrifices about 51
percent of the improvement in risk of JsTEIN over the
ordinary regression estimator (orEG) for the loss function
SPE. We make this statement for the data of these ex-
periments, knowing that the authors claim the contrary
at the end of Section 2.4.1. The risk function for spE
loss is a function only of cEN, the noncentrality param-
eter, which takes on the five values cex = 10, 50, 100,
200, 500 in this experiment. The approximate value of
the risk at thesc points (actually an upper bound) is
5.00, 5.74, 5.87, 5.93, and 5.972 for JsTEIN while STEINM
has 5.51, 5.87, 5.93, 5.97, and 5.986. Ordinary regression
has spE risk of 6.00 for all values of cEN, and so even
JsTEIN would not improve least squares substantially in
these experiments. The James-Stein estimator should not

be applied with the loss sEB, and is known not to be
minimax in this case.

But ripeM also is better than ssTEIN in these experi-
ments. This is expected for experiments or problems
where the regression parameters {8;} have an exchange-
able prior distribution. In the Dempster, Schatzoff, and
Wermuth experiments, the random rotation matrix G
tends to symmetrize the prior distribution, and this fact
combined with the dispersed set of eigenvalues insures
that ripem will be better. Professor Thisted’s comments
are much more complete on this issue.

In relation to the preceding paragraph, one of our
concerns about the widespread application of ridge re-
gression is that, being a data-based Bayes rule against
an exchangeable prior, it is necessary to feel confident
in the exchangeability assumption, while in most real
regression. problems the statistician couldn’t be. In
certain nonregression problems, for instance in the ex-
amples of [2], exchangeability seems plausible a priore,
but when this assumption is violated significantly, ridge
rules can be much worse than the ordinary regression
rule. That is, ridge rules are not minimax in general. We
will put these issues in more mathematical form to make
the argument clearer.

If we allow ourselves the luxury of thinking of » as
large (instead of 20) so that ¢® may be assumed known
(this could be relaxed at the price of additional mathe-
matical complexity), the Dempster, Schatzoff, and
Wermuth estimation problem may be expressed in
canonical form as the problem of observing

Y.,' ~ N(0.-, V.) , 1, = l(l)p (11)
independently with V; = ¢?/); and o known, Y, =a;
= (Cb);, C being the principal components orthogonal

transformation defined in Section 2.2. In this notation
6, = (CB); is to be cstimated with risk function

R=EY Li(b — 6 (1.2)

i=1
where L; = 1 for seB and L; = 1/V, for spE.
Letting A = ¢2/k, the independent prior distributions
6; ~N@©,4), i:=1Q)p , (1.3)
lead to the Bayes estimator
Eo;|Y;= (1 —-B)Y,, Bi=V,/(Vi+A4) . (14)

We say that (1.4) is an “empirical Bayes estimator” if
4 is cstimated from the independent marginal distribu-
tions (derived by integrating out the distributions of 8;
in (1.1) with respect to (1.3))

Ye~(A+Vox?, ¢+=10p, (1.5)

and then the estimate A is used in (1.4) in place of the
unknown value A. . :
Defining A; = Y2 — V,, we have EA; = A, so these
arc p independent unbiased statistics which may be used
to cstimate the unknown value A. Obvious unbiased
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estimates of A are of the form
A=Y AW, TW,=1. (1.6)

The choice W; = W.(4) « 1/Var (4;) = 5/(V.+ A)
resul}s in the ripgm estimate if W;(A) is replaced by
W.(A) in (1.6). The rule we proposed in [2] for the

toxoplasmosis data, which we label EBMLE, derives from

Wi(4) = 1/{Var (A4,)}? = .25/(V: + A}, Wi(A) re-
placed by W.(A) in (1.6). This is the optimal linear
estimator in (1.6), and is equivalent to the maximum
likelihood estimator of 4 from (1.5). Hence the term
EBMLE signifies the empirical Bayes model with maximum
likelihood estimation of A.

Both of the estimators of the preceding paragraph take
advantage of the exchangeability of (1.3) and therefore
are superior to sTEINM and JSTEIN for priors of the form
(1.3). It is essential to note, however, that if (1.3) were
replaced by 6; ~ N (0, V;A) then ssTEIN, which in this
notation is (1 — (p — 2)/3 Y#/V)Y,; and STEINM
would outperform EBMLE and ripeM. The experiment
therefore has proved that the array of experimental re-
gression coefficients is better represented by Var (8;) = 4
than Var (6,) = V:A.

Carter and Rolph used their own version of RiDGM
quite successfully in an empirical Bayes application to
spatial analysis [1]. (Actually both the Carter-Rolph
rule and EBMLE [2] were modified slightly so that they
reduce to the James-Stein rule when the V; all are equal.)
While we don’t know whether EBMLE or rIDGM is better
for small or moderate p, EBMLE must be better for large
p if (1.3) holds because of its relation to the maximum
likelihood estimator. It would be interesting to compare
these rules on the 160 data sets of the experiment.

If the V. are sufficiently unequal, then for certain
configurations of the parameters 6, ..., 6, both EBMLE
and RIDGM can be much worse than orEG for both losses
seB and spE. (The problem rests precisely with the
component having the large V, or small A,, i.e., the com-
ponent most ridge papers are concerned about.) JSTEIN,
of course, is guaranteed to improve upon OREG for SPE,
while it is not minimax for sEs.

It should be clear from the preceding discussion about
SRIDG, RIDGM, and EBMLE that there are many ways to
estimate the constant k from the data. Although almost
every ridge paper published, including this one, has
presented a different method, the expression ‘‘the ridge
estimator” continues to be used. In fact, ridge estimators
are a class of Bayes rules against normal priors indexed
by %, and the effectiveness of a given rule depends upon
how % is estimated. Some published ridge estimators are
drastically different from others, and some are disas-
trously bad. We believe that the important problem now
is to find estimators of £ which have good risk properties
in the class of all possible estimators.

Because most applications of Stein’s rule require its
generalization to the unequal variances situation, and
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because ridge regression formally reduces to this situa-
tion, we have given a great deal of thought to the problem
framed by (1.1)-(1.5) over the past several years. This
includes derivation of a wide class of minimax estimators
which encompasses most estimators already proven to be
minimax by other writers. We also have considered
numerous empirical Bayes rules, partly in light of a
necessary condition for minimaxity. In the equal variance
situation of James and Stein [4], minimax rules with
Bayesian properties against exchangeable priors exist,
but when orthogonal invariance is sacrificed this happy
result disappears. When the variances V; are sufficiently
unequal, our current understanding is as follows. A
fundamental tension exists between minimax and empiri-
cal Bayes {or ridge) requirements, and no rules appear to
exist which are satisfactory from both standpoints. One
cannot approximate the Bayes rule against the prior
(1.3) without risk of doing worse than the Gauss-Markov
estimator. Improvement on the Gauss-Markov estimator
in regression situations therefore can be guaranteed only
with external information about the prior distribution of
the regression coefficients. Unfortunately, such infor-
mation is not available for many applications.

To summarize, the statistician has a choice of shrink-
age rules to consider in applications to real data, and
must be careful in exercising this choice because, while
the rewards can be great, so also can be the penalties. No
choice uniformly dominates the Gauss-Markov estimator
for all loss functions. The statistician, therefore, must
know enough about his data and about the properties of
the alternative estimators available to him to make an
intelligent choice of rule. For the Dempster, Schatzoff,
and Wermuth experiments, the exchangeable prior, and
therefore the use of RIDGM or EBMLE, seems to be justified
in aggregate, although the statistician who looks at the
160 individual problems might choose not to use the same
rule in all of these situations. Other experiments could
give opposite conclusions, so the reader’s faith in the
results of this experiment ultimately depends on how .
much he believes the Dempster, Schatzoff, and Wermuth
data sets typify real world experience.
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Comment

The authors are to be congratulated for so clearly
presenting such a breadth of material. In addition, the
theoretical Bayesian development which leads to the
RIDGM algorithm is most ingenious and goes a long way
in attaining a realistic share of the ridge potential in
reducing mean square error.

In the joint papers [2, 3], where simulation was used
to examine ridge algorithms, orthogonal Z matrices of
various dimensions and conditionings were defined.
Random vectors a with specified norm (designated as
a® = o'a) and e were generated, and the resultant least
squares and ridge regression were characterized through
a quadratic loss function. In these simulations our origi-
nal algorithm relied on the minimum quadratic loss csti-
mate k; = o?/a® This is, as the authors state, an interest-
ing identity since it depends on a? (and %) only and not
on its corresponding eigenvalue A;, However, one can
readily satisfy oneself that when using sample estimates
the resultant loss is relatively large. Therefore, this
motivated us to use a single k. equal to the harmonic
mean of the p values ki, ..., kp, Le.,

ko, = pst/&’¢ .

Subsequent to this simulation publication [2], an
iterative algorithm with an empirical stopping rule based
on successive estimates of a’a has been published [3].
Since the sample value '@ overestimates o’a, k. tends to
underestimate its goal value. Therefore, since the first
ridge cut, k., results in an improved estimate, €g,, of «,
then &g, based on the square length of &z, would perhaps

" be a better estimate of a. The successive estimates k,; can

be repeated until the rate of change in k.; has stabilized.
This can be specified under an empirical stopping rule.

For the purposes of multiple comparisons of many
estimation techniques, the authors were wise in formu-
lating their comparisons by averaging their results over
a range of signal-to-noise. However, for the purposes of
evaluating a few algorithms it is perhaps more illustrative
to display the relative effectiveness of each at specific
values of signal-to-noise since it is not exclusively the
frequentists who would argue that in formulating a
simulation strategy the following criterion be used: if it
can be shown that one estimator is superior to another
for all specified values of o’a over a wide spectrum of
conditioning and a range of p, then regardless of the real
world frequency distribution of o’a (assuming a finite
domain), that estimator is preferable to the other. If

* Arthur E. Hoerl is Professor, Department of Statistics and Computer Science,
University of Delaware, Newark, DE 18711.

the two estimators vacillate in superiority as a function
of o’a, some subjective judgment would then be required.
As an example of this approach, the following is presented.

Using the Gorman-Toman data [1] with two spec-
trums of eigenvalue structure used in [2, 3], a series of
200 simulations was performed for each o’a value. The
uniform random number generator described in the
Appendix served as the basis for the simulation. Unit .
normals were generated by summing 12 random uniforms
on (—5, .5). Least-squares estimates &; were generated
by &; = a; + E; with E; decfined by the sum of 12
uniforms divided by +/A;. Sample values 2, of o = 1,
were defined by the sum of 25 squared unit normals
divided by the df 25.

For the 10-factor basic (the same eigenvalue structure
as originally published) the results in Section a of the
table were obtained. As a guide, the expectation for the
F ratio is included. The critical value of F(10, 25) with
a = .05 is 2.24. For Section a, the expectation for the
least-squares error is 32.58 and the maximum potential
is defined to be the minimum possible square error for

Average Square Error

Maxi-
Ordi- Itera- mum
nary Basic tive poten-
a'a E(F Ratio) L.S. ke, Kai RIDGM tial
a. 10-Factor Basic
1 1.20 34.12 7.99 6.80 2.18 .88
5 1.63 3185 - 883 8.57 5.15 3.47
10 2.17 30.03 9.66 9.89 7.53 5.52
15 2.72 31.55 11.06 11.15 9.10 7.01
25 3.80 30.70 12.75 12.81 12.05 9.51°
50 6.52 34.28 18.23 18.23 17.83 13.82
100 12.0 31.84 20.76 20.76 20.56 - 16.53
200 228 30.12 °  24.69 24.69 24.92 19.55
500 55.4 32.99 30.33 3033 3045 23.84
1000 110. 30.08 30.41 30.41 30.51 24.67
2500 273. 32.09 30.64 30.64 30.64 23.99
10000 1088. 32.77 32.73 32.73 32.73 27.78
100000 10871. 35.44 35.38 35.38 35.38 28.29
b. 10-Factor Wide
1 1.20 530 50.1 .99 2.92 .87
5 1.63 584 64.4 4.93 6.71 3.52
10 217 602 55.3 9.64 7.68 5.87
15 272 544 54.9 141 10.1 7.88
25 3.80 589 57.7 21.4 129 10.7
50 6.52 559 62.8 26.2 221 17.6
100 12.0 572 71.6 32.0 316 275
200 228 615 97.5 49.8 54.0 43.2
500 55.4 561 120. 88.7 89.4 62.2
1000 110. 568 160. 133. 138. 85.3

2500 273. 555 253. 240. 243. 138.
10000 1088. 597 448. 448. 449. 218.
100000 10871. 565 546. 546. 545. 282.
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each data set using a single k. This is defined by

. 2
Max Pot = Min { 'ZI: M & — a.-] } .
k0 AN+ k

Similarily, for the second simulation, with an assumed
eigenstructure (4.25, 1.50, 1.25, 1.00, .778, .6, .4, .2, .02,
.002), the 200 trial averages are given in Section b of the
table. Here, the expectation for the least-squares error
is 563.15.

These results suggest, then, the resultant effectiveness
similarity between the author’s ripgm and the current
iterative algorithm. This prompts a need for a broad
comparison, over a significant range of p and con-
ditioning, of these ridge algorithms together with other
ridge algorithms which are currently under study. This
suggested study would also need to be concerned with
the broader aspects of estimation including weighting
and prediction. Means for disseminating this information
at an early date would help to reduce unnecessary dupli-
cation and computational effort. Perhaps even a group
of interested participants could pool their resources and
talents in defining, formulating, and carrying out the
detailed simulations.

With the increasing reliance on simulation in regression
it would seem propitious to develop a standardized
procedure that would be reasonably acceptable. Here it
is suggested that sampling conditioned on an « norm is
one approach. This has the major attribute of avoiding
the question of what constitutes a typical regression
problem.

Dempster, Schatzoff, and Wermuth suggest that
another device to evaluate prediction might be a jack-
knifing type of technique. This has been extensively
investigated by Hoerl and Kennard and found deficient.
In fact, the basic idea was extended to include what we
called duplex (splitting the data into two groups under
a variety of criteria) and multiplex (defining all possible
subsets (3) and selecting all or some fractionated pro-
portion of all nondegenerate sets). In every instance over

DAVID M. ALLEN*
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a variety of simulations, the technique was found
wanting.

APPENDIX: UNIFORM RANDOM NUMBER ON [-.5, .51

Define an arbitrary irrational number 4 truncated to 12 significant
digits with a normalized floating-point as

A = (0.zzz— - —=)10° .

The generation of the uniform random numbers was obtained by
the following steps.
1. Form the normalized floating-point number

B =1/A = (0.zzz———=z)10°
with the remainder
R = (0.xzz— ——x)10r

where r < b — 12 and A X B 4 REMAINDER = 1 with a 24
digit product A X B. The mantissas of the respective
numbers R and A satisfy the condition

0 < mManT (RB) < MaNT (4) .

The assumption here is that the mantissa of the remainder B
after 12 significant places is independent of the divisor.
2. Form C = R/A as (0.zzz— —-z)10°. Set ¢ to zero and store
as the new A.
. The new C is assumed uniform on [.1, 1.].
. Subtract 0.1 from C and divide by 0.9 for [0, 1].
. Uniform numbers on [ —.5, .5] can be defined by subtracting
0.5 from C/0.9.

(LA V]

No more than 100,000 consecutive numbers should be used with
the same original seed to be well assured of a nonrepeated chain.
An unlimited run (with no repeating chain) can be achieved by
adding one to 4 on a fixed count of say every 50,000 numbers.

In no instance has the algorithm degenerated in over 10% uses.
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Comment

To establish some points for reference, I will begin by
expressing some of my own thoughts regarding regression.
We have a random vector y and a full-rank, nonstochastic
matrix X. The matrix X is said to be ill-conditioned if
there exists at least one vector £ such that [|{| = 1 and
[1XZ] is “small.” We denote E(y) by u, and we suppose

*David M. Allen is Associate Professor, Department of Statistics, University
of Kentucky, Lexington, KY 40506.

there exists a vector 3 such that w = Xg8. I will make
some harsh statements about § and then illustrate them
using a simple example. The example depends on
X = (x1|%5]%3), X* = (X1|x2|x5*), and w where the
vectors are given in the table.

What is the interpretation of 3? Let u; and z;; denote
the 7th elements of w and x;. Since u; = X_; z:;8; for all 7,
it is often appealing to suppress the subscript 7 and regard
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Vectors Used in Examples

X, Xy Xg x3* u
87.36 —87.36 -.07 .07 —84.
—43.17 —47.97 —65.08 —65.12 —69.
-51.68 —26.72 —55.99 —56.01 —68.
—54.32 —.56 —-39.20 —-39.20 —56.
—28.74 —59.46 —-62.97 —63.03 —54.,
—-51.14 25.66 —-18.21 -18.19 —38.
50.31 —-12.09 27.24 27.36 -33.
—42.19 47.09 3.48 3.52 -19.
—8.34 -56.34 —46.16 —46.24 —18.
18.78 34.14 37.75 37.85 —6.
—27.52 58.88 22.37 22.43 -4,
-7.18 56.18 34.96 35.04 2.
18.08 —33.76 -11.15 —-11.25 44,
50.57 13.13 45.56 45.44 137.
89.18 89.18 127.47 127.33 266.

4 as a linear function of continuous variables z;, z;, and
rs. A common interpretation is: 8; is the change in u
accompanying a unit change in z; with all other z’s
constant. The problem with this interpretation is that an
ill-conditioned X precludes all other z’s constant. For the
X of the example the relationship

I.5$1 + DLy — .7$a| < .05 (1)

is always satisfied. This requires z, or z; to change if z,
changes as much as .2. If z, increases by one and the
sum of absolute changes in z; and z; is kept as small as
possible subject to (1), then z, does not change and zs
increases by .5714. Thus the change in u accompanying
a unit change in z; with minimum changes in z, and z;
is B1 + .57148; and not @8;. If X is ill-conditioned then,
B has little or no interpretation.

The vector w is unique. Its elements are expected
values of observable random variables and are inter-
pretable. If X has not been correctly specified (Who
really knows X?), then there may not exist a 3 such
that y = X@. If X is correctly specified but ill-condi-
tioned, then § is fickle with regard to small perturbations
of the elements of X. In the example, both X and X*
are correct specifications in that their columns span the
same vector space and y is in that space. The maximum
absolute difference between corresponding elements of X
and X* is .14, yet 8 = (—41950/49, —41950/49, 1200)’
and B* = (42050/49, 42050/49, —1200)’ are drastically
different.

A. F. M. SMITH*

The estimation of a linear combination of the elements
of B where the variance of the least-squares estimator is
greater than o? will be termed an extrapolation. That is,
the precision of the estimator is less than the precision
of a direct observation on that linear combination (if
such observation were possible). If X is ill-conditioned,
then estimation of an individual element of g is often
an extreme form of extrapolation. For the X of our .
example the respective variances of estimators of 8i, 83,
and 8; are 18.2202 18.220¢? and 35.71602

Because of the high dimensionality of typical regression
problems it is impossible to conduct a comprehensive
simulation study. However, the authors have come closer
than any other study I have seen. I believe interpretation
of regression is most difficult when X is highly ill-condi-
tioned and thus regard Experiment 1 as being more
valuable than Experiment 2. In view of my harsh state-
ments about 8, I would rather have « (A.8) than 3 as a
factor in the study design. This would systematically
generate different u in the appropriate vector space. For
similar reasons, I place more credence on the analysis
by spe (A.11) than on the analysis by sEB (A.10). I am
impressed by the potential of rEGF methods and look
forward to studying them further.

The authors mention conflicts among different methods.
If we do not extrapolate, these apparent conflicts may
be of less consequence than they indicate. Evaluation of
SPE cannot involve extrapolation, while evaluation of sEB
often is extrapolation. This statement is supported by
the fact that the coefficient variation of SpE is less than
the coefficient of variation of sEs.

The authors caution against expecting any favorite
procedure to be automatically applicable. I emphatically
agree. In my example, the variance of the least-squares
estimator of (—51.14, 25.66, —18.21)3 is .0975540%
which is quite good for 15 observations. However, for
(—50.74, 26.06, —18.77)3 the variance is 46.62¢% Except
for unrealistically large values of ¢2, ridge is worse than
least squares in mean square error for both cases. We
should recognize the existence of situations where no
estimation, by any method, is warranted. The second
linear combination just mentioned is such a case. The
data simply does not contain much information about
that linear combination.

Comment

Interest in alternatives to ordinary least-squares pro-
cedures for the analysis of the normal linear model is now

* A.F.M. Smith is Lecturer, Department of Statistics and Computer Science,
University College London, Gower Street, London WCI1E 8BT, England.

widespread among both Bayesian and frequentist stat-
isticians, and the authors are to be congratulated on their
timely and stimulating contribution.

I shall confine my comments to just two aspects of this
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wide-ranging study: the first concerns the relationship
between continuous and discrete shrinking methods; the
second relates to the authors’ formulation of the pre-
diction problem.

A link between continuous and discrete shrinking
methods is implicit in a result established by Leamer
and Chamberlain [4, Theorem 1], which shows that the
RIDGE estimator—given here by (2.1) with Q equal to
the identity matrix—can be written as a weighted-
average of the 27 least-squares estimators corresponding

. to all possible ways of constraining subsets of the p

regression coefficients to be zero. The weighted-daverage
forms REGF and DRGF are not quite of this form, since
only (?) such least-squares estimators are combined (for
some chosen r), but it would, perhaps, be worthwhile
exploring the connection further. In particular, an
examination of the weights given by Leamer and Cham-
berlain [4, Eq. (4)] and those discussed in Appendix B
of this paper reveals great similarity, especially for prGF.
Indeed, apart from the fact that Leamer and Chamberlain
assume the variance ¢2 to be known, it appears that DRGF
could be derived by expressing RIDGE as a weighted-
average and then forming a renormed weighted-average
using only those terms corresponding to r nonzero-
constrained components (see [4, Eq. (3) and (4)] and
Appendix B, (B.2), (B.7), (B.8), (B.9) witha =71). A

- closer study of this connection might well give some

insight into the comparative performances of these
estimators. (A similar analysis could be made of the
relationship between PRI and an alternative weighted-
average representation of RIDGE given in [4, Theorem 2].)

I find the comparison of estimators using prediction
mean square error rather difficult to interpret. Indeed,
it seems to me that this part of the study is both mis-
leading and misguided in so far as it identifies the pre-
diction problem with that of predicting a set of future
values at precisely the same design points as have been
used In estimating the regression coefficients. This
obscures many of the features of interest that are present
in the more general prediction problem and leads the
authors to conclude that there is less scope for improve-
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ment over least squares in the prediction context. Brown
[17] has shown that this is not necessarily true, and his
arguments have been extended to a more general shrink-
age estimation setting by Goldstein [3].

The point at issue can be summarized as follows. Let
us assume that b* is an estimator of § from (A.1), and
that we wish to predict m future values of Y correspond-
ing to a design matrix X,(m X p), the latter scaled in
such a way that X,b* is the desired predictor. (Note that
the authors consider only the special case m = n,
X, = X.) It can be shown that if b* is taken to be the
RIDGE estimator, then the derivative, with respect to £,
of the predictive mean square error, evaluated at k& = 0,
is equal to —2¢2 3_; (Bii/\:), where B;; = (CX,7X,C7)y;,

‘and C and \; are defined by (A.5). In this more general

setting, it is the relationship between the B,; and the
A; which determines the scope for saving in predictive
mean square error. The case considered by the authors
has the special form B;; = A; and gives no insight into
the greater scope for improvement which occurs when
the larger values of B;; correspond to small values of
A;; l.e.,, when the directions in which predictions are
required turn out to be those which are poorly estimated
on the basis of the original design matrix.

Finally, I should like to draw attention to a splendid
example of RIDGE in action—that of ‘‘Election Night
Forecasting” in the U.K. [2]—where a version of RIDGE
triumphs over all-comers, including orEe (¢ = 0) and
ZERO (k = =), ‘
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Comment

CHRISTOPHER BINGHAM and KINLEY LARNTZ*

The methods of estimation compared in the paper fall
into two classes: those which are best understood in
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terms of the coordinates defined by the given independent
variables, and those which are best understood in terms
of canonical variables defined by eigenvectors of the
cross product or correlation matrix of the independent
variables. What seems to be important in both these
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cases is the orientation of the true coefficient vector
relative to the relevant coordinate system. _

In the case of best-subset methods or Bayesian mix-
tures of them, it seems to us that the relevant coordinates
are in terms of the orthogonal basis in variable space
defined by the independent variables as given, either
standardized or not. The coefficient 8; can be considered
the length of the projection of 3 on the jth basis vector.
Coefficient vectors oriented near the space spanned by a
small set of the basis vectors will be well approximated
by subset regression models, and methods assuming that
they are so oriented should be an improvement over
methods, such as least squares, that do not. In effect,
subset methods shrink the coefficient vector in the direc-
tion of planes determined by a subset of the basis vectors.
If that is appropriate, they do well.

The other class of estimators, ridge methods and their
generalizations, can be defined as

§ = (XX + Q—X'Y

where Q is a positive-semi-definite matrix, or as a limit
of such estimators. The independent variables matrix X
is almost always assumed to be corrected for the mean,
and is usually assumed to be standardized so that X'X
is a correlation matrix. The properties of such an esti-
mator are best understood in terms of the relative
eigenvectors of X’X and Q. It is well known that X'X
and Q can be simultaneously diagonalized. That is, there
18 a nonsingular matrix A such that

A'X'XA = A =diag [\, Az ..., Ap]
and
A'QA =K = diag [ky, k2, .- -, kp] .

The rows of A~! are proportional to the eigenvectors
of X'X relative to Q. For ordinary ridge regression,
Q = K = %I, and A is orthogonal. For generalized ridge
regression, A is orthogonal and Q is the matrix having
the same eigenvectors as X’X and eigenvalues ki, .. ., &5
For Marquardt’s generalized inverse, Q can be taken
as a limit of matrices of this form, with the k; correspond-
ing to the smallest eigenvalues \; of X’'X approaching
infinity and those corresponding to larger eigenvalues
being zero.

This diagonalization induces transformations of the
parameters and independent variables:

B—AB=a or §=Ae,
and
X—-»X=2XA.
We can express the estimator 3 as
8 = [(A)AA! + (AN'KATX'Y
= A(A + K)A'X'Y = A(A + KXY
=A@, where ¢ = A8 = (A + K)X'Y .
Thus § and § can be expressed in terms of @ and &, which
represent, the coordinates relative to the rows of A~ (the

columns of A, if A is orthogonal). These characterize the
orientation of 8 and J relative to these eigenvectors.

From the point of view of the paper, as well as of many
other authors, the relevant property of an estimator is a
generalized mean square error criterion

?=E[@-0'WE-8]=E[¢-a)'W@-ao]l,

where W = W’ and W = AWA’. In the usual cases
W = diag [wy, wy, ..., wp), i.e., W is also diagonalized
by A. Both sEB (W =1 = W) and spE (W = X'X,
W = A) are of this form. Then

72 = tr (W Cov [&]) + tr W(E[& — «JE[&@ — ') .
But Cov [&¢] = ¢*(A + K)~'A(A + K)~! and

E[6 —e] = (A + K)7A — Da =—(A + K)"'Ka .
Thus
= o? ¥ [wh/ (M + k)] + X [wiedkd/ (N + 597

It is easy to check that 7? is minimized for any choice

of w; >0 [1] by ki = ¢%/a? in accordance with Hoerl

and Kennard’s result for W =1 [3]. The minimized
value, which in some sense represents the best that one
could do using any estimator in this class of estimators, is

Tmin2 = 2 wi(o; + 0%/ad)/(\; + 0*/ad)?
= Z wiaiz/(l + Maiz/a'z) .

For least squares, (K = 0), we have
1'Ls2 = Z w.-a'z/)\,- .

Thus in each canonical direction the amount of pos-
sible improvement over least squares is (A;a?/d?)/
(1 + \e?/¢?). For fixed a;/0 the improvement is greatest
for smallest A;. This provides much of the motivation
for Marquardt’s generalized inverse estimator. However,
for fixed A;, no matter how small, this ratio can be made
as close to one as desired if the corresponding canonical
coefficient «; is large enough. In summary, we may con-
clude that the closer the coefficient, vector is to the space
spanned by the eigenvectors corresponding to the larger
eigenvalues A;, the more improvement ought to be pos-
sible over least squares.

The above considerations indicate to us that any ex-
periment designed to explore the merits of various adap-
tive ridge estimators, i.e., estimators with K chosen
depending on the data (usually on &.s/s), should have,
as one of the primary factors, variation of § relative to
the eigenvectors of X'X, i.e., variation of a. The second
important factor is, of course, the pattern of eigenvalues
of X’X. The direction of the eigenvectors is meaningful
only with respect to their relationship with 3. This is
why variation of « should be a factor rather than the
eigenvectors.

One difficulty in evaluating the results of the present
experiment is that the eigenvectors, or more importantly,
the o's, are not given. The orientation is left to chance,
without much indication of how the construction of
patterned correlation matrices constrains e. Even when
the eigenvector matrix of the nonstandardized form of
X’X is chosen randomly (uniformly over the orthogonal
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A. Orientation of Simulated Alpha’s

Al. EIG =64.0 16.0 4.0 2.0 1.0 0.5 COR=no
BETA = 32.0 16.0 8.0 8.0 8.0 8.0 MCL =no

A2. EIG =64.0 16.0 4.0 2.0 1.0 0.5 COR =no
BETA= 1.0 1.0 1.0 0.0 0.0 0.0 MCL =yes

A3. EIG = 30.0 30.0 30.0 20.0 20.0 20.0 COR = yes
BETA= 1.0 1.0 1.0 1.0 1.0 1.0 MCL =no

A4. EIG = 30.0 30.0 30.0 20.0 20.0 20.0 COR = yes
BETA=32.0 160 80 0.0 0.0 0.0 MCL =yes

NOTE: zg1e denotes eigenvalues of X’X matrix, and BETA denotes the ‘‘true’’ regression éoeﬁicienta.

group), the eigenvectors of R, the correlation matrix, are
not random. Still less random are the eigenvectors of R
after it is massaged to have high collinearity and/or
multicollinearity. To get a clearer picture of what might
have happened in the experiments described in the
paper, we conducted a small simulation study to investi-
gate the distribution of e, for fixed 8, when the eigenvec-
tors of X’X were chosen randomly and X’X was stand-
ardized and massaged exactly as described in the paper.
There is considerable difficulty in presenting the results

because the orientation of « is best expressed as a point
on the unit sphere in 6-space. One simplification followed
from the cbservation that we could always take e as
being in the orthant defined by «; >0, j =1, ..., 6.
To reduce the dimensionality, we looked at the orienta-
tion of @ in some of the twenty three-dimensional sub-
spaces defined by sets of three coordinate axes. An
effective way of displaying such three-dimensional orien-
tations is by means of an equiareal plot of a hemisphere
(in this case, an octant) on a disk (quadrant). Figure A
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Eigenvalue Patterns for SeB Simulation Study

Pattern no.

Eigenvalues

1 2 3 4 5 6 7 8 9 10

pP=2

A= AJA, 1.0 2.0 50 10.0 25.0 50.0 100.0 200.0 500.0 1000.0
Az 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. p=6
A 1.0 1.23 2.05 2.00 3.40 4.63 1.96 1.994 3.55 3.14
s 1.0 1.20 1.20 1.15 1.88 733 1.22 1.010 1.50 1.66
Ag 1.0 1.11 .958 1.02 436 .333 1.06 1.005 .583 877
Ay 1.0 .847 921 962 159 .164 936 995 228 257
As 1.0 827 790 816 .0738 .0927 823 990 126 .0615
Ag 1.0 778 .0803 .0484 .0502 .0420 .00716 .00600 00733 .000850
/s 1.0 1.59 255 41.3 67.7 110 274 332 484 3694
EIG — 30 30 30 64 64 30 — 64 64
MCL — no yes no no yes yes — no yes
coL — na no yes no no yes ; — yes yes
shows four typical plots. Each circle is actually four f:;‘m

plots, one for each of the four three-dimensional subspaces
containing the eigenvectors a; and a; corresponding to
the largest eigenvalue and the smallest eigenvalue of the

" correlation matrix, respectively. Thus, starting at the

upper right and proceeding clockwise, the four quadrants
display the orientations of the simulated s in the spaces
spanned by a,, a,, and as; &1, 23, and ag; 25, a4, and ag;
and a;, as and a, respectively, where the a;s are the
eigenvectors corresponding to Aj;, the Jth elgenvalue in
decreasing order of magnitude.

Figure Al corresponds to a situation in which there is
no introduced collinearity or multicollinearity. In this
case the distribution of the e;’s is exchangeable, although
probably not completely random (isotropic), and hence
we would not expect to see any marked pattern. In fact
the display shows a fairly uniform distribution of direc-

B. Ratio of seB for Ridge Methods to
SEB for Least Squares®

Ratio
10

~
~
001 1 1 1 L1 | 1
1 2 3 4 5 6 7 8 s 10

Pattern Number

B1. Canonical Coefficients: o = (10,0)

1 1 1 1 1 1 1 1 1N

1 2 3 4 5 6 7 8 ] 10
Pattern Number .
B2. Canonical Coefficients; «' = (V50, V50)

Ratio
10

1 1 1 1 1 - | )| 1 1

1 2 3 4 5 6 7 8 9 10
Pattern Number

B3. Canonical Coefficients: o' = (0,70)

s Number of regressors: p = 2,
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tions. In the other three cases with either collinearity,
multicollinearity, or both, the distributions are clearly
not random. Figures A2 and A4 display a marked
tendency for a; to be large relative to as, exactly the
situation for which we would expect ridge methods to be
an improvement over least squares. The degree of con-
sistency displayed by Figure A4 is, indeed, quite re-
markable. The ““inner’’ «,’s are, however, quite random.
Figure A3 shows a case for which both a; and a¢ tend to
be bounded away from zero, and to be rather highly
correlated. Again the “inner’”’ a;’s are relatively random.
For emphasis, we would like to repeat that these o’s
were chosen as described in the paper, using 100 different
random sets of eigenvectors. For the data sets discussed
in the paper corresponding to Figure A4, for which o’s
are not given, it is clear we can say quite a lot about
the orientation of a relative to a; and as, even though the
original eigenvectors were chosen randomly.

To study the effect of varying the o’s more explicitly
than was done in the paper, we conducted another small
simulation study. We restricted our investigation to a
comparison of least squares with a few ridge-type esti-
mators. No best-subset methods or their relatives were
included. The particular procedures selected were (with
the mnemonics used in our plots):

B: RIDGM in the paper, ridge with empirical Bayes k;

c: 1CRIDG in the paper, ridge with shrinkage to the F =1
contour;

I: PRIF in the paper, adaptive form of Marquardt’s generalized
inverse [5];

L: Ridge regression with &k estimated as ps’/@m'@u as sug-
gested by Hoerl, Kennard, and Baldwin [4];

o: Generalized ridge regression as proposed by Hoerl and
Kennard [3] with K = diag [k, ..., k5] computed using
a method of Hemmerle [2];

C. Ratio of ses for Ridge Methods to
SEB for Least Squares?®

Ratio
10

1 2 3 4 5 6 7 8 9 10
Pattern Number

C1. Canonical Coefficients: o' = (V99, 0.5, 0.5, 0.5, 0.5, 0)
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Ratio
10

1 1 ! A 1 1 1 L 1
1 2 3 4 5 6 7 8 9 10

Pattern Number

C2. Canonical Coefficients: o' = (3, V2.5, V2.5, V2.5, V2.5, 9)

Ratio
10

1
1 2 3 4

5 6 7 8 9 10
Pattarn Number

C3. Canonical Coefficients: «' = (0, 0.5, 0.5, 0.5, 0.5, V989)

b Number of regreasors: p = 6.

M: OPT in paper, generalized ridge with the correct (unrealiz-
able) optimal ks, yields a lower bound for ridge type
estimators.

Computations were carried out for p = 2 and p = 6 with
variety of canonical regression coefficients a and eigen-
values A. The o’s were standardized so that ¢’a = 100.
The variance ¢> was assumed to be 1. For each com-
bination (a, A), 1000 regressions with n = 20 were
simulated and the average sEs calculated. The eigenvalue
patterns for p = 2 and p = 6 are given in the table with
the patterns ordered by the ratio of the largest eigenvalue
to the smallest eigenvalue (i.e., the condition number of
the correlation matrix). For p = 6, eight of the eigen-
value combinations correspond to correlation matrices
constructed according to the 2? combinations of the
factors Eig, coL, and mcL in Experiment 2 of the paper.
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Different randomly chosen rotations were used in con-
structing each of these matrices.

The results are too lengthy to give in full here. The
general flavor is given in Figures B and C. Figure B
(p = 2) and Figure C (p = 6) are semi-log plots of the
ratio of the average sEB for each method to the average
sEB for least squares. A point above the sEB = 1 line
indicates the superiority of least squares. The abscissa is
simply the eigenvalue pattern. Thus, the condition
number of the correlation matrix increases from left to
right. For both p = 2 and p = 6 there are clear gains
for the ridge methods relative to least squares when a;
(the canonical regression coefficient associated with the
largest eigenvalue) is large. However, the gains become
losses when there are substantial «;’s associated with the
smaller eigenvalues, provided the condition number of
the matrix is not too large. For extreme eigenvalue
patterns, there appear to be guaranteed gains from the
ridge methods, irrespective of the s, at least within the
range of e patterns we studied. The basic point is that
for moderately ill-conditioned matrices (say correspond-
ing to the degree of collinearity and multicollinearity
studied in the paper) it is not at all clear that ridge
methods offer a clear-cut improvement over least squares
except for particular orientations of @ relative to the
eigenvectors of X'X.

Looking again more closely at Figure A (as well as
other similar plots not given here), we see that there were
cases where a; was in fact the dominant component, even
though no explicit decision was made to make it so. This
is a result of the choice of particular levels of factors
BETA, MCL, and coR. Perhaps a more suitable procedure
would have been to choose the orientations of the «'s

RONALD A. THISTED*

randomly, or even better, to choose combinations (e, A)
in a systematic experimental design.

The Monte Carlo computations just discussed were
performed using FORTRAN programs on a coc 6400 com-
puter. The random normal deviates used were generated
using a library routine NORMAL based on a method pro-
posed by Marsaglia and Bray [6]. The uniform random
numbers used by NorumAL were produced by a multipli-
cative congruential generator using modulus 2% and
multiplier 5'%. Because the simulations were intended to
be illustrative and preliminary, no attempt has been
made to determine standard errors for the ratios of sEs
in Figures B and C. All the curves in a plot were based
on the same sets of randomly generated least-squares
estimates Qrs. However, different plots were based on
independent samples of random deviates.
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Comment

Dempster, Schatzoff, and Wermuth have taken on the
task of determining how best to achieve in practice the
gains over least squares that are guaranteed to us in
theory when the regression coefficients number three or
more. They have given us a catalog of rules and, within
the limitations of their study, have given us much insight
into the behavior that these rules display and their
performance relative to one another. Their conclusions
are striking, particularly their assertion that ridge-
regression rules are markedly superior to Stein-type
estimators, and it is primarily toward this result that I

* Ronald A. Thisted is Assistant Professor, Department of Statisties, University
of Chicago, Chicago, IL 80637, This work was funded in part by a National Science
Foundation graduate fellowship.

shall direct my attention. Several remarks are in order
which perhaps will clarify the scope and generality of
their findings. These comments are primarily concerned
with the relative merits of RIDGE estimators and Stein-
type estimators.

The study attempts to separate the effects of col-
linearity, multicollinearity, and eigenvalue pattern by
including separate factors for each of them in the ex-
periments. However, both sPE and sEB for OREG, RIDGM,
and sTEINM depend upon X7X only through its eigen-
values. Furthermore, higher levels of coL (an McL in
Experiment 2) simply represent additional broadening
of the eigenvalue spectrum. Consequently, it is not
surprising to see significant main effects for each of these
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factors and nonsignificant interactions in Table 3. It is
important to recognize that these factors are not different
effects but one and the same—the effect of highly unequal
eigenvalues. As the reduction to principal components
shows, multicollinearity and collinearity affect sEB and
SPE only to the extent that they spread out the eigen-
values of X7X.

After discussing the optimality of rRIDGE and STEIN
rules, each of which is Bayes for a particular prior dis-
tribution on « and any quadratic loss, the authors proceed
to require a ‘‘rule for determining % from the sample
data.” Of course this simply won’t do for the subjectivist
Bayesian, for whom % represents a judgment on the
precisions of components of a. Further, it is important
to note that we may forfeit the previously mentioned
optimality if & is a function of the data.

It is curious that sTEINM does so badly with respect to
sPE. It is well known [2] that the problem of estimating
regression coefficients with sPE loss is equivalent to
estimating the mean of a multivariate normal distri-
bution with equal variances and loss function L(5, 8)
= ||® — B[[*/o® Furthermore, Efron and Morris [1] show
that in the latter problem the James-Stein positive-part
rule cannot be substantially improved upon in very much
of the parameter space. From the fact that sTEINM is
so badly beaten in sPE by RIpDGM we must conclude that:
STEINM is not equivalent to the James-Stein rule; the
parameters chosen in the study are restricted to regions
of the parameter space more favorable to RIDGE rules
than to sTEIN-type rules; or that in this particular trip
to Monte Carlo the house has taken its cut, and that the
results we see are not representative. This observation
brings us to our final point.

Bayes rules are not optimal only when the statistician
has quantified his prior beliefs about « by specifying a
probability distribution for it. They are also optimal,
for instance, when the parameters in each experiment
actually are generated by some random mechanism, the
distributional properties of which are known to the
statistician. In the latter case it makes sense to speak of
a ‘“‘correct’”’ prior distribution for «. The authors are
correct in their remark (p. 80) that,

To assert that Ripge is better [than sTEIN] in practice is
equivalent to asserting that its prior assuruptions are more
nearly correct over the range of the statistician’s experience.
Note especially that if the RIDGE prior is correct then the RipDGE
estimator is optimum for any quadratic loss function, including
SEB and SPE. i

Consequently, when we observe ripGM to be the big
winner both in SEB and spE, a rough application of Bayes
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theorem leads us to conclude with high posterior prob-
ability, that for these data, the RIDGE prior and not the
STEIN prior is “more nearly correct.”

Consider, then, the random mechanism by which « is
selected in this study. First of all, §is fixed, then a random
orthonormal matrix G is generated. For any fixed vector
u, Gu is uniformly distributed on the p sphere of radius
llul|. The matrix G corresponds to CT of Appendix A.
Consequently, « = G738 has a uniform distribution on
the p sphere of radius ||8]|. It is easy to see that, since
o, —«, and (—ay, ay, ..., a,;)T have the same distribution,

Ea.-=0,

Var () = p7|i6]I*,
Eaw; =0, 777 .

Hence, the method used to generate ¢ has mean zero and
equal component variances. Thus the prior variances of
the a;, by which we mean the variances of the random
mechanism generating the a, in this study, are equal and
not proportional to the inverse eigenvalues.

As the authors point out in the quoted passage, this
setup is highly favorable to ripGE, and it ought not to
be surprising that ripGM beats STEINM even on SPE, the
loss function most favorable to sTEIN-type estimators.
Furthermore, the more disparate the eigenvalues, the
worse STEIN-type rules will do in this experiment com-
pared to RIDGE rules, since the STEIN prior is less like the

““correct”’ prior. It is easy to predict on these grounds

that sTeiNmM will improve its performance in Experiment
2, since there are two vectors of eigenvalues added to
those of the first experiment, each of which is less extreme
than one of the vectors from the first experiment, so that
the average spread in the eigenvalues is reduced. sSTEINM
improves dramatically.

Let us return then to the data analyst, “who knows
only his data and not the underlying parameters,” and
let us leave him with two words of caution. The condi-
tions represented in the present experiment may not
represent those likely to occur in practice. Further, it is
perhaps still too early to recommend ridge regression for
routine use in data analysis.
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Rejoinder

A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH

1. INTRODUCTION

Since the discussants’ comments fall into a few distinct
categories, we shall organize our responses by topic
rather than respond to each discussant separately. We
preface our remarks with some comments of a general
nature. ,

Our first observation on reading the six sets of com-
ments 18 that all of the discussants are primarily in-
terested in RIDGE methods, or in the comparison of RIDGE
and sTEIN procedures. Thus despite years of widespread
use of techniques such as stepwise regression and regres-
sion on principal components, there is no mention of
these methods by the discussants. We believe that the
indicated direction of interest is due to a combination of
the lack of theoretical understanding of the latter classes
of procedures, and the analytical and philosophical
attractiveness of the RIDGE and STEIN approaches.
Possibly the performance comparisons produced by our
study are such as to dampen interest in many common
methods. Two of the discussants, Allen and Smith, ex-
pressed interest in the REGF methods, but did not offer
substantive remarks.

A second observation is that there are no comments on
the analysis of the results of the experiments. We were
worried that someone might question our use of orEG in
producing Table 5, while we clearly suggested in the
paper that methods such as Ripem and ¥REGF offered
possibilities for improved estimation.

Third, we are impressed by the variety and seriousness
of the commenters’ views on the broad classes of methods
covered by the labels ringE and sTEIN. We believe that
the state of the art in these areas is well reflected in the
discussion.

In considering the specific points raised by the dis-
cussants, it appears that most of these may be appro-
priately classified as follows:

1. Design of the experiment,
2. Theoretical aspects of RIDGE and sTEIN methods,
3. Estimation of the RIDGE parameter (k),

4. Criteria for evaluating alternate methods, and
5. What to do with real data.

We discuss in the next section what we consider to be the
relevant aspects of various comments pertaining to these
issues.

2. DISCUSSION OF SPECIFIC COMMENTS
2.1 Design of the Experiment

As with any Monte Carlo type of study, hard conclu-
sions must usually be confined to the domain of investi-

gation, with extrapolation to unexplored regions of the
parameter space difficult at best, and often hazardous.
Accordingly, we have not made sweeping claims as to the
general applicability of our results, but rather have at-
tempted to explore the effects of some parameters of
interest on a large number of different estimation pro-
cedures.

Two of the discussants’ papers (Allen; and Bingham
and Larntz) argued for variation of e rather than 8 in
the experimental design, while a third (Thisted) stressed
that the design factors coL and mcwL affect the risk func-
tions based on sPE and sEB only through the X's, for
OREG, RIDGM, and sTEINM. In both instances, our rationale
was to provide comparative evaluation of these pro-
cedures with various types of stepwise selection of vari-
ables. We expected these comparisons to be sensitive to
variation in the 8’s as well as to the pattern and degree of
correlations in the independent variables. It should be
pointed out that in the simulation examples presented
by Hoerl, based on random selection of the a’s with
specified norm, ripeMm had very high efficiency relative
to the maximum potential, over wide ranges of the norm.

A second comment on the design, made both in the
Thisted and Efron and Morris papers, has to do with our
use of a random rotation matrix. Their claim is that this
type of randomization would tend to symmetrize the
prior distribution of the A’s, resulting in exchangeable
prior distributions that would naturally favor mipeMm
against other methods. This idea is intriguing, but is
not made very precise in the comments. Perhaps it
means that random rotation makes the coordinates e
distribute in a way which appears exchangeable over the
160 data. sets. Note that both RIDGE and REGF assume
prior exchangeability among the components of 3, but
are very different methods which dominate each other in
different stituations, so exchangeability is not a sufficient
description of a prior distribution of g to guide the data
analyst. In any case, the actual distribution of 8 over
our 160 data sets is a very simple, known, discrete dis-
tribution, as opposed to the symmetrized distribution,
whatever that is. It seems a small swindle to base inter-
pretations on an artificially scrambled distribution of &’s
rather than the simple known distribution of 3. An
interesting question remains: how should we have syste-
matically varied our factor § to produce fairer com-
parisons of the relative strengths and weaknesses of
RIDGE and STEIN?
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2.2 Theoretical Aspects of RIDGE and STEIN Methods

Efron and Morris state that sTEINM is not the James-
Stein rule, as we have been careful to note in Section
2.4.1. We wish to point out that JsTEIN and sTEINM are
both sTEIN-type procedures in that they shrink uniformly
on all principle axes, and that they differ only in the
degree of shrinkage. We maintain our contention that
IsTEIN would have performed worse on our data than
STEINM. It thus appears that statistical theory is in
conflict with our empirical results.

We believe that statisticians should no longer accept
without question the assumptions of Efron, Morris, and

. Thisted that statistical techniques should be evaluated

theoretically by means of frequentist risk functions de-
pending on unknown parameter values. We were careful
in our paper to define sPE and SEB in terms of actual
errors’ of estimation, and not in terms of theoretical

 averages of such errors, whether frequentist or Bayesian.

Our comment may be illustrated by Thisted’s statement,
“both sPE and sEB for orEG, RIDGM, and sTEINM depend
upon XTX only through its eigenvalues,” which is
literally false according to our définitions. It is also false,
in general, when a prior distribution of 8 is available,
whether sEB and SPE are reinterpreted as posterior ex-
pectations given a data set, or are prior expectations of
such Bayes risks. The statement is true for prior ex-
pectations of a game player who knows 8, but the
relevance and applicability of this game to data analysis
is a matter of current dispute.

Having expressed serious reservations about the mean-
ing of the Efron-Morris-Thisted theory, we do wish 'to
express our admiration for their efforts, and our wish to
understand the insights which they feel the theory gives.
Their comment about the general incompatibility of
minimax and empirical Bayes seems to us to capture a
real dilemma of much of statistics: except in rare,
mathematically nice, and overly taught, circumstances,

‘there is no sure-thing principle to protect us against the

need for hard prior judgments.

2.3 Estimation of the RIDGE Parameter

Efron and Morris’s statement that ‘... ridge esti-
mators are a class of Bayes rules against normal priors
indexed by k, and the effectiveness of a given rule
depends upon how k is estimated” summarizes the
situation very concisely.

We believe that we have demonstrated remarkable
empirical properties for the ripem rule for estimating k.
We have received a letter from Professor Hoerl, written
after his original commentary on our paper, in which he
alludes to a recent comparative evaluation of a number
of ridge estimators over a spectrum of signal-to-noise.
He states, “Based on a broad comparison of all the
algorithms, with p = 10, yours is the most effective. In
fact, the degree to which your algorithm achieves near
potential is startling.”” We are not sure whether he is
referring to the study presented in his discussion of our
paper, or to a further exploration not yet reported.
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We agree with Efron and Morris that it would have
been desirable to include EBMLE in our set of RIDGE
methods. Our failure to do so was due to an error which
led us to believe until too late in the study that rRipeM
was equivalent to EBMLE. We would conjecture that
EBMLE should be slightly better than RIiDGM on our
criteria.

Perhaps there are some Bayesian statisticians as
Thisted states ‘““for whom k represents a judgment on
the precisions of components of a.”” A more usual con-
temporary Bayesian formulation would be to regard k as
an unknown which needs a prior distribution just like
other unknowns. The use of an estimated § associated
with an estimated k£ is a crude approximation to the
center of a posterior distribution, which is reasonably
stable across a plausible range of smooth priors on k.
We did not spell this out because our paper is not pri-
marily Bayesian in outlook. We do feel, however, and
Efron, Morris, and Thisted apparently agree, that the
success of RIDGM must relate to some type of fit between
the design of our study and the Bayesian assumptions
which make RIDGM a near-optimum technique.

2.4 Criteria for Evalugtion of Alternate Methods

Smith, and Efron and Morris have addressed them-
selves to the question of criteria for comparing different
methods.

Specifically, Smith is concerned about our use of spE
as a measure of predictive error, because it is defined only
at the same design points used in the experiment. He
correctly points out that it ‘... gives no insight into the
greater scope for improvement which occurs ... when
the directions in which predictions are required turn out

‘to be those which are poorly estimated on the basis of

the original design matrix.”’ It would have been interest-
ing to expand the design to incorporate evaluation of
predictive errors at points other than those included in
the original design.

Efron and Morris state that ssTEIN should not be
applied with the loss sEB, because it is not minimax in
this case. We believe, however, that sEB is a very im-
portant criterion, since it often happens that the principal
objective of a regression study is to estimate the values
of the regression coefficients.

2.5 What to Do with Real Data

The problem of what to do with real data is not solved
by our study. Efron and Morris, and Thisted correctly
caution against the routine application of any shrinkage
rule, and indeed we have adopted exactly the same
posture in our paper. None of the discussants offered any
concrete proposals, however, as to how one should pro-
ceed when analyzing real data. Nor were there any
comments on our suggestions other than those by Hoerl,
who indicated that he has experimented with a number
of versions of our suggestion to divide data into subsets
as a basis for comparing different estimation techniques.
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Although he claims to have found such techniques to be
deficient, we would be most interested in seeing the
results. In terms of a predictive error critcrion such as
SPE, or the predictive mean square error advocated by
Smith, it would seem that comparison of the predictive
capabilities of various methods from one subset to
another would provide a reasonable empirical basis for
selecting a particular method in a given situation.

3. CONCLUSION

We feel that a number of interesting and useful points
have emerged from the various discussions of our paper,

and believe that the combined effect will be to stimulate
further research, both theoretical and experimental. We
view the problem of what to do with rcal data as being
of paramount importance and we hope that some of the
suggestions made in the concluding section of our paper
will be followed up. This is not meant to preclude inde-
pendent approaches, for there is certainly ample room
for development and exploration of new ideas on many
facets of the problem. The potential for large gains
clearly exists. We need to develop tools for better ex-
ploiting this potential.
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